Principal Component Analysis
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
In this paper, we propose to adopt the diffusion approximation tools to study the dynamics of Oja's iteration which is an online stochastic gradient method for the principal component analysis. Oja's iteration maintains a running estimate of the true principal component from streaming data and enjoys less temporal and spatial complexities. We show that the Oja's iteration for the top eigenvector generates a continuous-state discrete-time Markov chain over the unit sphere. We characterize the Oja's iteration in three phases using diffusion approximation and weak convergence tools. Our three-phase analysis further provides a finite-sample error bound for the running estimate, which matches the minimax information lower bound for PCA under the additional assumption of bounded samples.
Streaming Kernel PCA with \tilde{O}(\sqrt{n}) Random Features
We study the statistical and computational aspects of kernel principal component analysis using random Fourier features and show that under mild assumptions, O(\sqrt{n} \log n) features suffices to achieve O(1/\epsilon 2) sample complexity. Furthermore, we give a memory efficient streaming algorithm based on classical Oja's algorithm that achieves this rate
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
Chris Junchi Li, Mengdi Wang, Han Liu, Tong Zhang
In this paper, we propose to adopt the diffusion approximation tools to study the dynamics of Oja's iteration which is an online stochastic gradient descent method for the principal component analysis. Oja's iteration maintains a running estimate of the true principal component from streaming data and enjoys less temporal and spatial complexities. We show that the Oja's iteration for the top eigenvector generates a continuous-state discrete-time Markov chain over the unit sphere. We characterize the Oja's iteration in three phases using diffusion approximation and weak convergence tools. Our three-phase analysis further provides a finite-sample error bound for the running estimate, which matches the minimax information lower bound for principal component analysis under the additional assumption of bounded samples.
Unveiling the Hidden Structure of Self-Attention via Kernel Principal Component Analysis
Teo, Rachel S. Y., Nguyen, Tan M.
The remarkable success of transformers in sequence modeling tasks, spanning various applications in natural language processing and computer vision, is attributed to the critical role of self-attention. Similar to the development of most deep learning models, the construction of these attention mechanisms rely on heuristics and experience. In our work, we derive self-attention from kernel principal component analysis (kernel PCA) and show that self-attention projects its query vectors onto the principal component axes of its key matrix in a feature space. We then formulate the exact formula for the value matrix in self-attention, theoretically and empirically demonstrating that this value matrix captures the eigenvectors of the Gram matrix of the key vectors in self-attention. Leveraging our kernel PCA framework, we propose Attention with Robust Principal Components (RPC-Attention), a novel class of robust attention that is resilient to data contamination. We empirically demonstrate the advantages of RPC-Attention over softmax attention on the ImageNet-1K object classification, WikiText-103 language modeling, and ADE20K image segmentation task.
Randomized Principal Component Analysis for Hyperspectral Image Classification
The high-dimensional feature space of the hyperspectral imagery poses major challenges to the processing and analysis of the hyperspectral data sets. In such a case, dimensionality reduction is necessary to decrease the computational complexity. The random projections open up new ways of dimensionality reduction, especially for large data sets. In this paper, the principal component analysis (PCA) and randomized principal component analysis (R-PCA) for the classification of hyperspectral images using support vector machines (SVM) and light gradient boosting machines (LightGBM) have been investigated. In this experimental research, the number of features was reduced to 20 and 30 for classification of two hyperspectral datasets (Indian Pines and Pavia University). The experimental results demonstrated that PCA outperformed R-PCA for SVM for both datasets, but received close accuracy values for LightGBM. The highest classification accuracies were obtained as 0.9925 and 0.9639 by LightGBM with original features for the Pavia University and Indian Pines, respectively.
Model orthogonalization and Bayesian forecast mixing via Principal Component Analysis
Giuliani, Pablo, Godbey, Kyle, Kejzlar, Vojtech, Nazarewicz, Witold
One can improve predictability in the unknown domain by combining forecasts of imperfect complex computational models using a Bayesian statistical machine learning framework. In many cases, however, the models used in the mixing process are similar. In addition to contaminating the model space, the existence of such similar, or even redundant, models during the multimodeling process can result in misinterpretation of results and deterioration of predictive performance. In this work we describe a method based on the Principal Component Analysis that eliminates model redundancy. We show that by adding model orthogonalization to the proposed Bayesian Model Combination framework, one can arrive at better prediction accuracy and reach excellent uncertainty quantification performance.
Computer aided diagnosis system for Alzheimers disease using principal component analysis and machine learning based approaches
Alzheimer's disease is a severe neurological brain disorder. It is not curable, but earlier detection can help improve symptoms in a great deal. The machine learning-based approaches are popular and well-motivated models for many medical image processing tasks such as computer-aided diagnosis. These techniques can vastly improve the process for accurate diagnosis of Alzheimer's disease. In this paper, we investigate the performance of these techniques for Alzheimer's disease detection and classification using brain MRI and PET images from the OASIS database. The proposed system takes advantage of the powerful artificial neural network and support vector machines as classifiers, as well as principal component analysis as a feature extraction technique. The results indicate that the combined scheme achieves good accuracy and offers a significant advantage over the other approaches.
Implementation of the Principal Component Analysis onto High-Performance Computer Facilities for Hyperspectral Dimensionality Reduction: Results and Comparisons
Martel, E., Lazcano, R., Lopez, J., Madroñal, D., Salvador, R., Lopez, S., Juarez, E., Guerra, R., Sanz, C., Sarmiento, R.
Dimensionality reduction represents a critical preprocessing step in order to increase the efficiency and the performance of many hyperspectral imaging algorithms. However, dimensionality reduction algorithms, such as the Principal Component Analysis (PCA), suffer from their computationally demanding nature, becoming advisable for their implementation onto high-performance computer architectures for applications under strict latency constraints. This work presents the implementation of the PCA algorithm onto two different high-performance devices, namely, an NVIDIA Graphics Processing Unit (GPU) and a Kalray manycore, uncovering a highly valuable set of tips and tricks in order to take full advantage of the inherent parallelism of these high-performance computing platforms, and hence, reducing the time that is required to process a given hyperspectral image. Moreover, the achieved results obtained with different hyperspectral images have been compared with the ones that were obtained with a field programmable gate array (FPGA)-based implementation of the PCA algorithm that has been recently published, providing, for the first time in the literature, a comprehensive analysis in order to highlight the pros and cons of each option.
Demixed Principal Component Analysis
In many experiments, the data points collected live in high-dimensional observation spaces, yet can be assigned a set of labels or parameters. In electrophysiological recordings, for instance, the responses of populations of neurons generally depend on mixtures of experimentally controlled parameters. The heterogeneity and diversity of these parameter dependencies can make visualization and interpretation of such data extremely difficult. Standard dimensionality reduction techniques such as principal component analysis (PCA) can provide a succinct and complete description of the data, but the description is constructed independent of the relevant task variables and is often hard to interpret. Here, we start with the assumption that a particularly informative description is one that reveals the dependency of the high-dimensional data on the individual parameters. We show how to modify the loss function of PCA so that the principal components seek to capture both the maximum amount of variance about the data, while also depending on a minimum number of parameters. We call this method demixed principal component analysis (dPCA) as the principal components here segregate the parameter dependencies. We phrase the problem as a probabilistic graphical model, and present a fast Expectation-Maximization (EM) algorithm. We demonstrate the use of this algorithm for electrophysiological data and show that it serves to demix the parameter-dependence of a neural population response.
Large-Scale Sparse Principal Component Analysis with Application to Text Data
Sparse PCA provides a linear combination of small number of features that maximizes variance across data. Although Sparse PCA has apparent advantages compared to PCA, such as better interpretability, it is generally thought to be computationally much more expensive. In this paper, we demonstrate the surprising fact that sparse PCA can be easier than PCA in practice, and that it can be reliably applied to very large data sets. This comes from a rigorous feature elimination pre-processing result, coupled with the favorable fact that features in real-life data typically have exponentially decreasing variances, which allows for many features to be eliminated. We introduce a fast block coordinate ascent algorithm with much better computational complexity than the existing first-order ones. We provide experimental results obtained on text corpora involving millions of documents and hundreds of thousands of features. These results illustrate how Sparse PCA can help organize a large corpus of text data in a user-interpretable way, providing an attractive alternative approach to topic models.