Goto

Collaborating Authors

 Principal Component Analysis


Cone-Constrained Principal Component Analysis

Neural Information Processing Systems

Estimating a vector from noisy quadratic observations is a task that arises naturally in many contexts, from dimensionality reduction, to synchronization and phase retrieval problems. It is often the case that additional information is available about the unknown vector (for instance, sparsity, sign or magnitude of its entries). Many authors propose non-convex quadratic optimization problems that aim at exploiting optimally this information. However, solving these problems is typically NP-hard. We consider a simple model for noisy quadratic observation of an unknown vector \bvz .


The Noisy Power Method: A Meta Algorithm with Applications

Neural Information Processing Systems

We provide a new robust convergence analysis of the well-known power method for computing the dominant singular vectors of a matrix that we call noisy power method. Our result characterizes the convergence behavior of the algorithm when a large amount noise is introduced after each matrix-vector multiplication. The noisy power method can be seen as a meta-algorithm that has recently found a number of important applications in a broad range of machine learning problems including alternating minimization for matrix completion, streaming principal component analysis (PCA), and privacy-preserving spectral analysis. A recent work of Mitliagkas et al. (NIPS 2013) gives a space-efficient algorithm for PCA in a streaming model where samples are drawn from a spiked covariance model. We give a simpler and more general analysis that applies to arbitrary distributions.


Improved Distributed Principal Component Analysis

Neural Information Processing Systems

We study the distributed computing setting in which there are multiple servers, each holding a set of points, who wish to compute functions on the union of their point sets. A key task in this setting is Principal Component Analysis (PCA), in which the servers would like to compute a low dimensional subspace capturing as much of the variance of the union of their point sets as possible. Given a procedure for approximate PCA, one can use it to approximately solve problems such as k -means clustering and low rank approximation. The essential properties of an approximate distributed PCA algorithm are its communication cost and computational efficiency for a given desired accuracy in downstream applications. We give new algorithms and analyses for distributed PCA which lead to improved communication and computational costs for k -means clustering and related problems.


Learned Robust PCA: A Scalable Deep Unfolding Approach for High-Dimensional Outlier Detection

Neural Information Processing Systems

Robust principal component analysis (RPCA) is a critical tool in modern machine learning, which detects outliers in the task of low-rank matrix reconstruction. In this paper, we propose a scalable and learnable non-convex approach for high-dimensional RPCA problems, which we call Learned Robust PCA (LRPCA). LRPCA is highly efficient, and its free parameters can be effectively learned to optimize via deep unfolding. Moreover, we extend deep unfolding from finite iterations to infinite iterations via a novel feedforward-recurrent-mixed neural network model. We establish the recovery guarantee of LRPCA under mild assumptions for RPCA.


Robust PCA with compressed data

Neural Information Processing Systems

The robust principal component analysis (RPCA) problem seeks to separate low-rank trends from sparse outlierswithin a data matrix, that is, to approximate a n\times d matrix D as the sum of a low-rank matrix L and a sparse matrix S .We examine the robust principal component analysis (RPCA) problem under data compression, wherethe data Y is approximately given by (L S)\cdot C, that is, a low-rank sparse data matrix that has been compressed to size n\times m (with m substantially smaller than the original dimension d) via multiplication witha compression matrix C . We give a convex program for recovering the sparse component S along with the compressed low-rank component L\cdot C, along with upper bounds on the error of this reconstructionthat scales naturally with the compression dimension m and coincides with existing results for the uncompressedsetting m d . Our results can also handle error introduced through additive noise or through missing data.The scaling of dimension, compression, and signal complexity in our theoretical results is verified empirically through simulations, and we also apply our method to a data set measuring chlorine concentration acrossa network of sensors, to test its performance in practice.


Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis

arXiv.org Artificial Intelligence

This paper addresses the challenge of spectral-spatial feature extraction for hyperspectral image classification by introducing a novel tensor-based framework. The proposed approach incorporates circular convolution into a tensor structure to effectively capture and integrate both spectral and spatial information. Building upon this framework, the traditional Principal Component Analysis (PCA) technique is extended to its tensor-based counterpart, referred to as Tensor Principal Component Analysis (TPCA). The proposed TPCA method leverages the inherent multi-dimensional structure of hyperspectral data, thereby enabling more effective feature representation. Experimental results on benchmark hyperspectral datasets demonstrate that classification models using TPCA features consistently outperform those using traditional PCA and other state-of-the-art techniques. These findings highlight the potential of the tensor-based framework in advancing hyperspectral image analysis.


Anomaly Detection in California Electricity Price Forecasting: Enhancing Accuracy and Reliability Using Principal Component Analysis

arXiv.org Artificial Intelligence

Accurate and reliable electricity price forecasting has significant practical implications for grid management, renewable energy integration, power system planning, and price volatility management. This study focuses on enhancing electricity price forecasting in California's grid, addressing challenges from complex generation data and heteroskedasticity. Utilizing principal component analysis (PCA), we analyze CAISO's hourly electricity prices and demand from 2016-2021 to improve day-ahead forecasting accuracy. Initially, we apply traditional outlier analysis with the interquartile range method, followed by robust PCA (RPCA) for more effective outlier elimination. This approach improves data symmetry and reduces skewness. We then construct multiple linear regression models using both raw and PCA-transformed features. The model with transformed features, refined through traditional and SAS Sparse Matrix outlier removal methods, shows superior forecasting performance. The SAS Sparse Matrix method, in particular, significantly enhances model accuracy. Our findings demonstrate that PCA-based methods are key in advancing electricity price forecasting, supporting renewable integration and grid management in day-ahead markets. Keywords: Electricity price forecasting, principal component analysis (PCA), power system planning, heteroskedasticity, renewable energy integration.


Disentangling Interpretable Factors with Supervised Independent Subspace Principal Component Analysis

arXiv.org Machine Learning

The success of machine learning models relies heavily on effectively representing high-dimensional data. However, ensuring data representations capture human-understandable concepts remains difficult, often requiring the incorporation of prior knowledge and decomposition of data into multiple subspaces. Traditional linear methods fall short in modeling more than one space, while more expressive deep learning approaches lack interpretability. Here, we introduce Supervised Independent Subspace Principal Component Analysis ($\texttt{sisPCA}$), a PCA extension designed for multi-subspace learning. Leveraging the Hilbert-Schmidt Independence Criterion (HSIC), $\texttt{sisPCA}$ incorporates supervision and simultaneously ensures subspace disentanglement. We demonstrate $\texttt{sisPCA}$'s connections with autoencoders and regularized linear regression and showcase its ability to identify and separate hidden data structures through extensive applications, including breast cancer diagnosis from image features, learning aging-associated DNA methylation changes, and single-cell analysis of malaria infection. Our results reveal distinct functional pathways associated with malaria colonization, underscoring the essentiality of explainable representation in high-dimensional data analysis.


TL-PCA: Transfer Learning of Principal Component Analysis

arXiv.org Machine Learning

Principal component analysis (PCA) can be significantly limited when there is too few examples of the target data of interest. We propose a transfer learning approach to PCA (TL-PCA) where knowledge from a related source task is used in addition to the scarce data of a target task. Our TL-PCA has two versions, one that uses a pretrained PCA solution of the source task, and another that uses the source data. Our proposed approach extends the PCA optimization objective with a penalty on the proximity of the target subspace and the source subspace as given by the pretrained source model or the source data. This optimization is solved by eigendecomposition for which the number of data-dependent eigenvectors (i.e., principal directions of TL-PCA) is not limited to the number of target data examples, which is a root cause that limits the standard PCA performance. Accordingly, our results for image datasets show that the representation of test data is improved by TL-PCA for dimensionality reduction where the learned subspace dimension is lower or higher than the number of target data examples.


Robust Sub-Gaussian Principal Component Analysis and Width-Independent Schatten Packing

Neural Information Processing Systems

We develop two methods for the following fundamental statistical task: given an \eps -corrupted set of n samples from a d -dimensional sub-Gaussian distribution, return an approximate top eigenvector of the covariance matrix. Our first robust PCA algorithm runs in polynomial time, returns a 1 - O(\eps\log\eps {-1}) -approximate top eigenvector, and is based on a simple iterative filtering approach. Our second, which attains a slightly worse approximation factor, runs in nearly-linear time and sample complexity under a mild spectral gap assumption. These are the first polynomial-time algorithms yielding non-trivial information about the covariance of a corrupted sub-Gaussian distribution without requiring additional algebraic structure of moments. As a key technical tool, we develop the first width-independent solvers for Schatten- p norm packing semidefinite programs, giving a (1 \eps) -approximate solution in O(p\log(\tfrac{nd}{\eps})\eps {-1}) input-sparsity time iterations (where n, d are problem dimensions).