Nearest Neighbor Methods
KNN Ensembles for Tweedie Regression: The Power of Multiscale Neighborhoods
Very few K-nearest-neighbor (KNN) ensembles exist, despite the efficacy of this approach in regression, classification, and outlier detection. Those that do exist focus on bagging features, rather than varying k or bagging observations; it is unknown whether varying k or bagging observations can improve prediction. Given recent studies from topological data analysis, varying k may function like multiscale topological methods, providing stability and better prediction, as well as increased ensemble diversity. This paper explores 7 KNN ensemble algorithms combining bagged features, bagged observations, and varied k to understand how each of these contribute to model fit. Specifically, these algorithms are tested on Tweedie regression problems through simulations and 6 real datasets; results are compared to state-of-the-art machine learning models including extreme learning machines, random forest, boosted regression, and Morse-Smale regression. Results on simulations suggest gains from varying k above and beyond bagging features or samples, as well as the robustness of KNN ensembles to the curse of dimensionality. KNN regression ensembles perform favorably against state-of-the-art algorithms and dramatically improve performance over KNN regression. Further, real dataset results suggest varying k is a good strategy in general (particularly for difficult Tweedie regression problems) and that KNN regression ensembles often outperform state-of-the-art methods. These results for k-varying ensembles echo recent theoretical results in topological data analysis, where multidimensional filter functions and multiscale coverings provide stability and performance gains over single-dimensional filters and single-scale covering. This opens up the possibility of leveraging multiscale neighborhoods and multiple measures of local geometry in ensemble methods.
Fast k-Nearest Neighbour Search via Prioritized DCI
Most exact methods for k-nearest neighbour search suffer from the curse of dimensionality; that is, their query times exhibit exponential dependence on either the ambient or the intrinsic dimensionality. Dynamic Continuous Indexing (DCI) offers a promising way of circumventing the curse and successfully reduces the dependence of query time on intrinsic dimensionality from exponential to sublinear. In this paper, we propose a variant of DCI, which we call Prioritized DCI, and show a remarkable improvement in the dependence of query time on intrinsic dimensionality. In particular, a linear increase in intrinsic dimensionality, or equivalently, an exponential increase in the number of points near a query, can be mostly counteracted with just a linear increase in space. We also demonstrate empirically that Prioritized DCI significantly outperforms prior methods. In particular, relative to Locality-Sensitive Hashing (LSH), Prioritized DCI reduces the number of distance evaluations by a factor of 14 to 116 and the memory consumption by a factor of 21.
Exemplar-Centered Supervised Shallow Parametric Data Embedding
Min, Martin Renqiang, Guo, Hongyu, Song, Dongjin
Metric learning methods for dimensionality reduction in combination with k-Nearest Neighbors (kNN) have been extensively deployed in many classification, data embedding, and information retrieval applications. However, most of these approaches involve pairwise training data comparisons, and thus have quadratic computational complexity with respect to the size of training set, preventing them from scaling to fairly big datasets. Moreover, during testing, comparing test data against all the training data points is also expensive in terms of both computational cost and resources required. Furthermore, previous metrics are either too constrained or too expressive to be well learned. To effectively solve these issues, we present an exemplar-centered supervised shallow parametric data embedding model, using a Maximally Collapsing Metric Learning (MCML) objective. Our strategy learns a shallow high-order parametric embedding function and compares training/test data only with learned or precomputed exemplars, resulting in a cost function with linear computational complexity for both training and testing. We also empirically demonstrate, using several benchmark datasets, that for classification in two-dimensional embedding space, our approach not only gains speedup of kNN by hundreds of times, but also outperforms state-of-the-art supervised embedding approaches.
k-nearest neighbor algorithm using Python
This article was written by Natasha Latysheva. Here we publish a short version, with references to full source code in the original article. In machine learning, you may often wish to build predictors that allows to classify things into categories based on some set of associated values. For example, it is possible to provide a diagnosis to a patient based on data from previous patients. Many algorithms have been developed for automated classification, and common ones include random forests, support vector machines, Naïve Bayes classifiers, and many types of neural networks.
Prototypical Networks for Few-shot Learning
Snell, Jake, Swersky, Kevin, Zemel, Richard S.
We propose prototypical networks for the problem of few-shot classification, where a classifier must generalize to new classes not seen in the training set, given only a small number of examples of each new class. Prototypical networks learn a metric space in which classification can be performed by computing distances to prototype representations of each class. Compared to recent approaches for few-shot learning, they reflect a simpler inductive bias that is beneficial in this limited-data regime, and achieve excellent results. We provide an analysis showing that some simple design decisions can yield substantial improvements over recent approaches involving complicated architectural choices and meta-learning. We further extend prototypical networks to zero-shot learning and achieve state-of-the-art results on the CU-Birds dataset.
ŷhat Intuitive Classification using KNN and Python
K-nearest neighbors, or KNN, is a supervised learning algorithm for either classification or regression. It's super intuitive and has been applied to many types of problems. To make a personalized offer to one customer, you might employ KNN to find similar customers and base your offer on their purchase behaviors. KNN has also been applied to medical diagnosis and credit scoring. This is a post about the K-nearest neighbors algorithm and Python.
K-Nearest Neighbor classification using python
A number of open-source communities are using python to make available artificial intelligence and machine learning related packages and libraries. In this blog I will use libraries from scikit-learn. Project scikit-learn is a Machine Learning Project in Python. It has a good collection of algorithms for some of the well known data-mining and data analysis jobs such as for Classification, Regression, Clustering, Dimensionality reduction and Model Selection. These algorithms are constructed on a stack of NumPy, SciPy library, and matplotlib.
A to Z of Analytics
Artificial Intelligence:: AI is the capability of a machine to imitate intelligent human behavior. BMW, Tesla, Google are using AI for self-driving cars. AI should be used to solve real world tough problems like climate modeling to disease analysis and betterment of humanity. Boosting and Bagging: it is the technique used to generate more accurate models by ensembling multiple models together Crisp-DM: is the cross industry standard process for data mining. It was developed by a consortium of companies like SPSS, Teradata, Daimler and NCR Corporation in 1997 to bring the order in developing analytics models.
Adaptive Neighboring Selection Algorithm Based on Curvature Prediction in Manifold Learning
Ma, Lin, Zhou, Caifa, Liu, Xi, Xu, Yubin
Recently manifold learning algorithm for dimensionality reduction attracts more and more interests, and various linear and nonlinear, global and local algorithms are proposed. The key step of manifold learning algorithm is the neighboring region selection. However, so far for the references we know, few of which propose a generally accepted algorithm to well select the neighboring region. So in this paper, we propose an adaptive neighboring selection algorithm, which successfully applies the LLE and ISOMAP algorithms in the test. It is an algorithm that can find the optimal K nearest neighbors of the data points on the manifold. And the theoretical basis of the algorithm is the approximated curvature of the data point on the manifold. Based on Riemann Geometry, Jacob matrix is a proper mathematical concept to predict the approximated curvature. By verifying the proposed algorithm on embedding Swiss roll from R3 to R2 based on LLE and ISOMAP algorithm, the simulation results show that the proposed adaptive neighboring selection algorithm is feasible and able to find the optimal value of K, making the residual variance relatively small and better visualization of the results. By quantitative analysis, the embedding quality measured by residual variance is increased 45.45% after using the proposed algorithm in LLE.