Nearest Neighbor Methods
Semi-Supervised Anomaly Detection for the Determination of Vehicle Hijacking Tweets
Patel, Taahir Aiyoob, Nyirenda, Clement N.
In South Africa, there is an ever-growing issue of vehicle hijackings. This leads to travellers constantly being in fear of becoming a victim to such an incident. This work presents a new semi-supervised approach to using tweets to identify hijacking incidents by using unsupervised anomaly detection algorithms. Tweets consisting of the keyword "hijacking" are obtained, stored, and processed using the term frequency-inverse document frequency (TF-IDF) and further analyzed by using two anomaly detection algorithms: 1) K-Nearest Neighbour (KNN); 2) Cluster Based Outlier Factor (CBLOF). The comparative evaluation showed that the KNN method produced an accuracy of 89%, whereas the CBLOF produced an accuracy of 90%. The CBLOF method was also able to obtain a F1-Score of 0.8, whereas the KNN produced a 0.78. Therefore, there is a slight difference between the two approaches, in favour of CBLOF, which has been selected as a preferred unsupervised method for the determination of relevant hijacking tweets. In future, a comparison will be done between supervised learning methods and the unsupervised methods presented in this work on larger dataset. Optimisation mechanisms will also be employed in order to increase the overall performance.
Two Phases of Scaling Laws for Nearest Neighbor Classifiers
Yang, Pengkun, Zhang, Jingzhao
A scaling law refers to the observation that the test performance of a model improves as the number of training data increases. A fast scaling law implies that one can solve machine learning problems by simply boosting the data and the model sizes. Yet, in many cases, the benefit of adding more data can be negligible. In this work, we study the rate of scaling laws of nearest neighbor classifiers. We show that a scaling law can have two phases: in the first phase, the generalization error depends polynomially on the data dimension and decreases fast; whereas in the second phase, the error depends exponentially on the data dimension and decreases slowly. Our analysis highlights the complexity of the data distribution in determining the generalization error. When the data distributes benignly, our result suggests that nearest neighbor classifier can achieve a generalization error that depends polynomially, instead of exponentially, on the data dimension.
Random Forests for Change Point Detection
Londschien, Malte, Bรผhlmann, Peter, Kovรกcs, Solt
We propose a novel multivariate nonparametric multiple change point detection method using classifiers. We construct a classifier log-likelihood ratio that uses class probability predictions to compare different change point configurations. We propose a computationally feasible search method that is particularly well suited for random forests, denoted by changeforest. However, the method can be paired with any classifier that yields class probability predictions, which we illustrate by also using a k-nearest neighbor classifier. We prove that it consistently locates change points in single change point settings when paired with a consistent classifier. Our proposed method changeforest achieves improved empirical performance in an extensive simulation study compared to existing multivariate nonparametric change point detection methods. An efficient implementation of our method is made available for R, Python, and Rust users in the changeforest software package.
AI-Assisted Investigation of On-Chain Parameters: Risky Cryptocurrencies and Price Factors
Zekiye, Abdulrezzak, Utku, Semih, Amroush, Fadi, Ozkasap, Oznur
Cryptocurrencies have become a popular and widely researched topic of interest in recent years for investors and scholars. In order to make informed investment decisions, it is essential to comprehend the factors that impact cryptocurrency prices and to identify risky cryptocurrencies. This paper focuses on analyzing historical data and using artificial intelligence algorithms on on-chain parameters to identify the factors affecting a cryptocurrency's price and to find risky cryptocurrencies. We conducted an analysis of historical cryptocurrencies' on-chain data and measured the correlation between the price and other parameters. In addition, we used clustering and classification in order to get a better understanding of a cryptocurrency and classify it as risky or not. The analysis revealed that a significant proportion of cryptocurrencies (39%) disappeared from the market, while only a small fraction (10%) survived for more than 1000 days. Our analysis revealed a significant negative correlation between cryptocurrency price and maximum and total supply, as well as a weak positive correlation between price and 24-hour trading volume. Moreover, we clustered cryptocurrencies into five distinct groups using their on-chain parameters, which provides investors with a more comprehensive understanding of a cryptocurrency when compared to those clustered with it. Finally, by implementing multiple classifiers to predict whether a cryptocurrency is risky or not, we obtained the best f1-score of 76% using K-Nearest Neighbor.
Machine Learning aided Computer Architecture Design for CNN Inferencing Systems
Efficient and timely calculations of Machine Learning (ML) algorithms are essential for emerging technologies like autonomous driving, the Internet of Things (IoT), and edge computing. One of the primary ML algorithms used in such systems is Convolutional Neural Networks (CNNs), which demand high computational resources. This requirement has led to the use of ML accelerators like GPGPUs to meet design constraints. However, selecting the most suitable accelerator involves Design Space Exploration (DSE), a process that is usually time-consuming and requires significant manual effort. Our work presents approaches to expedite the DSE process by identifying the most appropriate GPGPU for CNN inferencing systems. We have developed a quick and precise technique for forecasting the power and performance of CNNs during inference, with a MAPE of 5.03% and 5.94%, respectively. Our approach empowers computer architects to estimate power and performance in the early stages of development, reducing the necessity for numerous prototypes. This saves time and money while also improving the time-to-market period.
Varying-coefficients for regional quantile via KNN-based LASSO with applications to health outcome study
Park, Seyoung, Lee, Eun Ryung, Hong, Hyokyoung G.
Health outcomes, such as body mass index and cholesterol levels, are known to be dependent on age and exhibit varying effects with their associated risk factors. In this paper, we propose a novel framework for dynamic modeling of the associations between health outcomes and risk factors using varying-coefficients (VC) regional quantile regression via K-nearest neighbors (KNN) fused Lasso, which captures the time-varying effects of age. The proposed method has strong theoretical properties, including a tight estimation error bound and the ability to detect exact clustered patterns under certain regularity conditions. To efficiently solve the resulting optimization problem, we develop an alternating direction method of multipliers (ADMM) algorithm. Our empirical results demonstrate the efficacy of the proposed method in capturing the complex age-dependent associations between health outcomes and their risk factors.
A Comparative Study on TF-IDF feature Weighting Method and its Analysis using Unstructured Dataset
Das, Mamata, K., Selvakumar, Alphonse, P. J. A.
Text Classification is the process of categorizing text into the relevant categories and its algorithms are at the core of many Natural Language Processing (NLP). Term Frequency-Inverse Document Frequency (TF-IDF) and NLP are the most highly used information retrieval methods in text classification. We have investigated and analyzed the feature weighting method for text classification on unstructured data. The proposed model considered two features N-Grams and TF-IDF on the IMDB movie reviews and Amazon Alexa reviews dataset for sentiment analysis. Then we have used the state-of-the-art classifier to validate the method i.e., Support Vector Machine (SVM), Logistic Regression, Multinomial Naive Bayes (Multinomial NB), Random Forest, Decision Tree, and k-nearest neighbors (KNN). From those two feature extractions, a significant increase in feature extraction with TF-IDF features rather than based on N-Gram. TF-IDF got the maximum accuracy (93.81%), precision (94.20%), recall (93.81%), and F1-score (91.99%) value in Random Forest classifier.
Customizing Textile and Tactile Skins for Interactive Industrial Robots
Su, Bo Ying, Wei, Zhongqi, McCann, James, Yuan, Wenzhen, Liu, Changliu
Tactile skins made from textiles enhance robot-human interaction by localizing contact points and measuring contact forces. This paper presents a solution for rapidly fabricating, calibrating, and deploying these skins on industrial robot arms. The novel automated skin calibration procedure maps skin locations to robot geometry and calibrates contact force. Through experiments on a FANUC LR Mate 200id/7L industrial robot, we demonstrate that tactile skins made from textiles can be effectively used for human-robot interaction in industrial environments, and can provide unique opportunities in robot control and learning, making them a promising technology for enhancing robot perception and interaction.
Bees Local Phase Quantization Feature Selection for RGB-D Facial Expressions Recognition
Mousavi, Seyed Muhammad Hossein, Ilanloo, Atiye
Feature selection could be defined as an optimization problem and solved by bio-inspired algorithms. Bees Algorithm (BA) shows decent performance in feature selection optimization tasks. On the other hand, Local Phase Quantization (LPQ) is a frequency domain feature which has excellent performance on Depth images. Here, after extracting LPQ features out of RGB (colour) and Depth images from the Iranian Kinect Face Database (IKFDB), the Bees feature selection algorithm applies to select the desired number of features for final classification tasks. IKFDB is recorded with Kinect sensor V.2 and contains colour and depth images for facial and facial micro-expressions recognition purposes. Here five facial expressions of Anger, Joy, Surprise, Disgust and Fear are used for final validation. The proposed Bees LPQ method is compared with Particle Swarm Optimization (PSO) LPQ, PCA LPQ, Lasso LPQ, and just LPQ features for classification tasks with Support Vector Machines (SVM), K-Nearest Neighbourhood (KNN), Shallow Neural Network and Ensemble Subspace KNN. Returned results, show a decent performance of the proposed algorithm (99 % accuracy) in comparison with others.
Graph Structure from Point Clouds: Geometric Attention is All You Need
The use of graph neural networks has produced significant advances in point cloud problems, such as those found in high energy physics. The question of how to produce a graph structure in these problems is usually treated as a matter of heuristics, employing fully connected graphs or K-nearest neighbors. In this work, we elevate this question to utmost importance as the Topology Problem. We propose an attention mechanism that allows a graph to be constructed in a learned space that handles geometrically the flow of relevance, providing one solution to the Topology Problem. We test this architecture, called GravNetNorm, on the task of top jet tagging, and show that it is competitive in tagging accuracy, and uses far fewer computational resources than all other comparable models.