Goto

Collaborating Authors

 Discriminant Analysis


A Doubly Regularized Linear Discriminant Analysis Classifier with Automatic Parameter Selection

arXiv.org Machine Learning

Linear discriminant analysis (LDA) based classifiers tend to falter in many practical settings where the training data size is smaller than, or comparable to, the number of features. As a remedy, different regularized LDA (RLDA) methods have been proposed. These methods may still perform poorly depending on the size and quality of the available training data. In particular, the test data deviation from the training data model, for example, due to noise contamination, can cause severe performance degradation. Moreover, these methods commit further to the Gaussian assumption (upon which LDA is established) to tune their regularization parameters, which may compromise accuracy when dealing with real data. To address these issues, we propose a doubly regularized LDA classifier that we denote as R2LDA. In the proposed R2LDA approach, the RLDA score function is converted into an inner product of two vectors. By substituting the expressions of the regularized estimators of these vectors, we obtain the R2LDA score function that involves two regularization parameters. To set the values of these parameters, we adopt three existing regularization techniques; the constrained perturbation regularization approach (COPRA), the bounded perturbation regularization (BPR) algorithm, and the generalized cross-validation (GCV) method. These methods are used to tune the regularization parameters based on linear estimation models, with the sample covariance matrix's square root being the linear operator. Results obtained from both synthetic and real data demonstrate the consistency and effectiveness of the proposed R2LDA approach, especially in scenarios involving test data contaminated with noise that is not observed during the training phase.


Two-dimensional Bhattacharyya bound linear discriminant analysis with its applications

arXiv.org Machine Learning

Recently proposed L2-norm linear discriminant analysis criterion via the Bhattacharyya error bound estimation (L2BLDA) is an effective improvement of linear discriminant analysis (LDA) for feature extraction. However, L2BLDA is only proposed to cope with vector input samples. When facing with two-dimensional (2D) inputs, such as images, it will lose some useful information, since it does not consider intrinsic structure of images. In this paper, we extend L2BLDA to a two-dimensional Bhattacharyya bound linear discriminant analysis (2DBLDA). 2DBLDA maximizes the matrix-based between-class distance which is measured by the weighted pairwise distances of class means and meanwhile minimizes the matrix-based within-class distance. The weighting constant between the between-class and within-class terms is determined by the involved data that makes the proposed 2DBLDA adaptive. In addition, the criterion of 2DBLDA is equivalent to optimizing an upper bound of the Bhattacharyya error. The construction of 2DBLDA makes it avoid the small sample size problem while also possess robustness, and can be solved through a simple standard eigenvalue decomposition problem. The experimental results on image recognition and face image reconstruction demonstrate the effectiveness of the proposed methods.


Capped norm linear discriminant analysis and its applications

arXiv.org Machine Learning

Classical linear discriminant analysis (LDA) is based on squared Frobenious norm and hence is sensitive to outliers and noise. To improve the robustness of LDA, in this paper, we introduce capped l_{2,1}-norm of a matrix, which employs non-squared l_2-norm and "capped" operation, and further propose a novel capped l_{2,1}-norm linear discriminant analysis, called CLDA. Due to the use of capped l_{2,1}-norm, CLDA can effectively remove extreme outliers and suppress the effect of noise data. In fact, CLDA can be also viewed as a weighted LDA. CLDA is solved through a series of generalized eigenvalue problems with theoretical convergency. The experimental results on an artificial data set, some UCI data sets and two image data sets demonstrate the effectiveness of CLDA.


Linear discriminant initialization for feed-forward neural networks

arXiv.org Machine Learning

Informed by the basic geometry underlying feed forward neural networks, we initialize the weights of the first layer of a neural network using the linear discriminants which best distinguish individual classes. Networks initialized in this way take fewer training steps to reach the same level of training, and asymptotically have higher accuracy on training data.


Variance Linear Discriminant Analysis for IRIS Biometrics

AAAI Conferences

Dichotomy transformation in biometric authentication problem creates a two class (""within"" or ""between"") classification problem in multivariate distance space. Linear discriminant analysis, which is a linear classifier, results in good performance in IRIS biometric authentication problem. However, it assumes that the distributions of two classes are normal, whereas they are closely related to the log-normal distributions. Here a modified variance linear discriminant analysis algorithm is proposed and its superior experimental results on the IRIS biometric database are reported.


Linear Discriminant Analysis for Dimensionality Reduction in Python

#artificialintelligence

Reducing the number of input variables for a predictive model is referred to as dimensionality reduction. Fewer input variables can result in a simpler predictive model that may have better performance when making predictions on new data. Linear Discriminant Analysis, or LDA for short, is a predictive modeling algorithm for multi-class classification. It can also be used as a dimensionality reduction technique, providing a projection of a training dataset that best separates the examples by their assigned class. The ability to use Linear Discriminant Analysis for dimensionality reduction often surprises most practitioners.


Robust Feature-Sample Linear Discriminant Analysis for Brain Disorders Diagnosis

Neural Information Processing Systems

A wide spectrum of discriminative methods is increasingly used in diverse applications for classification or regression tasks. However, many existing discriminative methods assume that the input data is nearly noise-free, which limits their applications to solve real-world problems. Particularly for disease diagnosis, the data acquired by the neuroimaging devices are always prone to different sources of noise. Robust discriminative models are somewhat scarce and only a few attempts have been made to make them robust against noise or outliers. These methods focus on detecting either the sample-outliers or feature-noises.


Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis

arXiv.org Machine Learning

When a robot acquires new information, ideally it would immediately be capable of using that information to understand its environment. While deep neural networks are now widely used by robots for inferring semantic information, conventional neural networks suffer from catastrophic forgetting when they are incrementally updated, with new knowledge overwriting established representations. While a variety of approaches have been developed that attempt to mitigate catastrophic forgetting in the incremental batch learning scenario, in which an agent learns a large collection of labeled samples at once, streaming learning has been much less studied in the robotics and deep learning communities. In streaming learning, an agent learns instances one-by-one and can be tested at any time. Here, we revisit streaming linear discriminant analysis, which has been widely used in the data mining research community. By combining streaming linear discriminant analysis with deep learning, we are able to outperform both incremental batch learning and streaming learning algorithms on both ImageNet-1K and CORe50.


Robust Linear Discriminant Analysis Using Ratio Minimization of L1,2-Norms

arXiv.org Machine Learning

As one of the most popular linear subspace learning methods, the Linear Discriminant Analysis (LDA) method has been widely studied in machine learning community and applied to many scientific applications. Traditional LDA minimizes the ratio of squared L2-norms, which is sensitive to outliers. In recent research, many L1-norm based robust Principle Component Analysis methods were proposed to improve the robustness to outliers. However, due to the difficulty of L1-norm ratio optimization, so far there is no existing work to utilize sparsity-inducing norms for LDA objective. In this paper, we propose a novel robust linear discriminant analysis method based on the L1,2-norm ratio minimization. Minimizing the L1,2-norm ratio is a much more challenging problem than the traditional methods, and there is no existing optimization algorithm to solve such non-smooth terms ratio problem. We derive a new efficient algorithm to solve this challenging problem, and provide a theoretical analysis on the convergence of our algorithm. The proposed algorithm is easy to implement, and converges fast in practice. Extensive experiments on both synthetic data and nine real benchmark data sets show the effectiveness of the proposed robust LDA method.


Correction of AI systems by linear discriminants: Probabilistic foundations

arXiv.org Machine Learning

Artificial Intelligence (AI) systems sometimes make errors and will make errors in the future, from time to time. These errors are usually unexpected, and can lead to dramatic consequences. Intensive development of AI and its practical applications makes the problem of errors more important. Total re-engineering of the systems can create new errors and is not always possible due to the resources involved. The important challenge is to develop fast methods to correct errors without damaging existing skills. We formulated the technical requirements to the 'ideal' correctors. Such correctors include binary classifiers, which separate the situations with high risk of errors from the situations where the AI systems work properly. Surprisingly, for essentially high-dimensional data such methods are possible: simple linear Fisher discriminant can separate the situations with errors from correctly solved tasks even for exponentially large samples. The paper presents the probabilistic basis for fast non-destructive correction of AI systems. A series of new stochastic separation theorems is proven. These theorems provide new instruments for fast non-iterative correction of errors of legacy AI systems. The new approaches become efficient in high-dimensions, for correction of high-dimensional systems in high-dimensional world (i.e. for processing of essentially high-dimensional data by large systems).