Cross Validation
Counterfactual Cross-Validation: Effective Causal Model Selection from Observational Data
What is the most effective way to select the best causal model among potential candidates? In this paper, we propose a method to effectively select the best individual-level treatment effect (ITE) predictors from a set of candidates using only an observational validation set. In model selection or hyperparameter tuning, we are interested in choosing the best model or the value of hyperparameter from potential candidates. Thus, we focus on accurately preserving the rank order of the ITE prediction performance of candidate causal models. The proposed evaluation metric is theoretically proved to preserve the true ranking of the model performance in expectation and to minimize the upper bound of the finite sample uncertainty in model selection. Consistent with the theoretical result, empirical experiments demonstrate that our proposed method is more likely to select the best model and set of hyperparameter in both model selection and hyperparameter tuning.
Efficient Cross-Validation of Echo State Networks
Lukoševičius, Mantas, Uselis, Arnas
Echo State Networks (ESNs) are known for their fast and precise one-shot learning of time series. But they often need good hyper-parameter tuning for best performance. For this good validation is key, but usually, a single validation split is used. In this rather practical contribution we suggest several schemes for cross-validating ESNs and introduce an efficient algorithm for implementing them. The component that dominates the time complexity of the already quite fast ESN training remains constant (does not scale up with $k$) in our proposed method of doing $k$-fold cross-validation. The component that does scale linearly with $k$ starts dominating only in some not very common situations. Thus in many situations $k$-fold cross-validation of ESNs can be done for virtually the same time complexity as a simple single split validation. Space complexity can also remain the same. We also discuss when the proposed validation schemes for ESNs could be beneficial and empirically investigate them on several different real-world datasets.
Estimating the Standard Error of Cross-Validation-Based Estimators of Classification Rules Performance
First, we analyze the variance of the Cross Validation (CV)-based estimators used for estimating the performance of classification rules. Second, we propose a novel estimator to estimate this variance using the Influence Function (IF) approach that had been used previously very successfully to estimate the variance of the bootstrap-based estimators. The motivation for this research is that, as the best of our knowledge, the literature lacks a rigorous method for estimating the variance of the CV-based estimators. What is available is a set of ad-hoc procedures that have no mathematical foundation since they ignore the covariance structure among dependent random variables. The conducted experiments show that the IF proposed method has small RMS error with some bias. However, surprisingly, the ad-hoc methods still work better than the IF-based method. Unfortunately, this is due to the lack of enough smoothness if compared to the bootstrap estimator. This opens the research for three points: (1) more comprehensive simulation study to clarify when the IF method win or loose; (2) more mathematical analysis to figure out why the ad-hoc methods work well; and (3) more mathematical treatment to figure out the connection between the appropriate amount of "smoothness" and decreasing the bias of the IF method.
A Leisurely Look at Versions and Variants of the Cross Validation Estimator
Many versions of cross-validation (CV) exist in the literature; and each version though has different variants. All are used interchangeably by many practitioners; yet, without explanation to the connection or difference among them. This article has three contributions. First, it starts by mathematical formalization of these different versions and variants that estimate the error rate and the Area Under the ROC Curve (AUC) of a classification rule, to show the connection and difference among them. Second, we prove some of their properties and prove that many variants are either redundant or "not smooth". Hence, we suggest to abandon all redundant versions and variants and only keep the leave-one-out, the $K$-fold, and the repeated $K$-fold. We show that the latter is the only among the three versions that is "smooth" and hence looks mathematically like estimating the mean performance of the classification rules. However, empirically, for the known phenomenon of "weak correlation", which we explain mathematically and experimentally, it estimates both conditional and mean performance almost with the same accuracy. Third, we conclude the article with suggesting two research points that may answer the remaining question of whether we can come up with a finalist among the three estimators: (1) a comparative study, that is much more comprehensive than those available in literature and conclude no overall winner, is needed to consider a wide range of distributions, datasets, and classifiers including complex ones obtained via the recent deep learning approach. (2) we sketch the path of deriving a rigorous method for estimating the variance of the only "smooth" version, repeated $K$-fold CV, rather than those ad-hoc methods available in the literature that ignore the covariance structure among the folds of CV.
Subsampling Bias and The Best-Discrepancy Systematic Cross Validation
Guo, Liang, Liu, Jianya, Lu, Ruodan
Statistical machine learning models should be evaluated and validated before putting to work. Conventional k-fold Monte Carlo Cross-Validation (MCCV) procedure uses a pseudo-random sequence to partition instances into k subsets, which usually causes subsampling bias, inflates generalization errors and jeopardizes the reliability and effectiveness of cross-validation. Based on ordered systematic sampling theory in statistics and low-discrepancy sequence theory in number theory, we propose a new k-fold cross-validation procedure by replacing a pseudo-random sequence with a best-discrepancy sequence, which ensures low subsampling bias and leads to more precise Expected-Prediction-Error estimates. Experiments with 156 benchmark datasets and three classifiers (logistic regression, decision tree and naive bayes) show that in general, our cross-validation procedure can extrude subsampling bias in the MCCV by lowering the EPE around 7.18% and the variances around 26.73%. In comparison, the stratified MCCV can reduce the EPE and variances of the MCCV around 1.58% and 11.85% respectively. The Leave-One-Out (LOO) can lower the EPE around 2.50% but its variances are much higher than the any other CV procedure. The computational time of our cross-validation procedure is just 8.64% of the MCCV, 8.67% of the stratified MCCV and 16.72% of the LOO. Experiments also show that our approach is more beneficial for datasets characterized by relatively small size and large aspect ratio. This makes our approach particularly pertinent when solving bioscience classification problems. Our proposed systematic subsampling technique could be generalized to other machine learning algorithms that involve random subsampling mechanism.
A General $\mathcal{O}(n^2)$ Hyper-Parameter Optimization for Gaussian Process Regression with Cross-Validation and Non-linearly Constrained ADMM
Xu, Linning, Yin, Feng, Zhang, Jiawei, Luo, Zhi-Quan, Cui, Shuguang
Hyper-parameter optimization remains as the core issue of Gaussian process (GP) for machine learning nowadays. The benchmark method using maximum likelihood (ML) estimation and gradient descent (GD) is impractical for processing big data due to its $O(n^3)$ complexity. Many sophisticated global or local approximation models, for instance, sparse GP, distributed GP, have been proposed to address such complexity issue. In this paper, we propose two novel and general-purpose GP hyper-parameter training schemes (GPCV-ADMM) by replacing ML with cross-validation (CV) as the fitting criterion and replacing GD with a non-linearly constrained alternating direction method of multipliers (ADMM) as the optimization method. The proposed schemes are of $O(n^2)$ complexity for any covariance matrix without special structure. We conduct various experiments based on both synthetic and real data sets, wherein the proposed schemes show excellent performance in terms of convergence, hyper-parameter estimation accuracy, and computational time in comparison with the traditional ML based routines given in the GPML toolbox.
Sparse Approximate Cross-Validation for High-Dimensional GLMs
Stephenson, William, Broderick, Tamara
Leave-one-out cross validation (LOOCV) can be particularly accurate among CV variants for estimating out-of-sample error. Unfortunately, LOOCV requires re-fitting a model $N$ times for a dataset of size $N$. To avoid this prohibitive computational expense, a number of authors have proposed approximations to LOOCV. These approximations work well when the unknown parameter is of small, fixed dimension but suffer in high dimensions; they incur a running time roughly cubic in the dimension, and, in fact, we show their accuracy significantly deteriorates in high dimensions. We demonstrate that these difficulties can be surmounted in $\ell_1$-regularized generalized linear models when we assume that the unknown parameter, while high dimensional, has a small support. In particular, we show that, under interpretable conditions, the support of the recovered parameter does not change as each datapoint is left out. This result implies that the previously proposed heuristic of only approximating CV along the support of the recovered parameter has running time and error that scale with the (small) support size even when the full dimension is large. Experiments on synthetic and real data support the accuracy of our approximations.
The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial
Ghojogh, Benyamin, Crowley, Mark
In this tutorial paper, we first define mean squared error, variance, covariance, and bias of both random variables and classification/predictor models. Then, we formulate the true and generalization errors of the model for both training and validation/test instances where we make use of the Stein's Unbiased Risk Estimator (SURE). We define overfitting, underfitting, and generalization using the obtained true and generalization errors. We introduce cross validation and two well-known examples which are $K$-fold and leave-one-out cross validations. We briefly introduce generalized cross validation and then move on to regularization where we use the SURE again. We work on both $\ell_2$ and $\ell_1$ norm regularizations. Then, we show that bootstrap aggregating (bagging) reduces the variance of estimation. Boosting, specifically AdaBoost, is introduced and it is explained as both an additive model and a maximum margin model, i.e., Support Vector Machine (SVM). The upper bound on the generalization error of boosting is also provided to show why boosting prevents from overfitting. As examples of regularization, the theory of ridge and lasso regressions, weight decay, noise injection to input/weights, and early stopping are explained. Random forest, dropout, histogram of oriented gradients, and single shot multi-box detector are explained as examples of bagging in machine learning and computer vision. Finally, boosting tree and SVM models are mentioned as examples of boosting.
On the marginal likelihood and cross-validation
In Bayesian statistics, the marginal likelihood, also known as the evidence, is used to evaluate model fit as it quantifies the joint probability of the data under the prior. In contrast, non-Bayesian models are typically compared using cross-validation on held-out data, either through $k$-fold partitioning or leave-$p$-out subsampling. We show that the marginal likelihood is formally equivalent to exhaustive leave-$p$-out cross-validation averaged over all values of $p$ and all held-out test sets when using the log posterior predictive probability as the scoring rule. Moreover, the log posterior predictive is the only coherent scoring rule under data exchangeability. This offers new insight into the marginal likelihood and cross-validation and highlights the potential sensitivity of the marginal likelihood to the setting of the prior. We suggest an alternative approach using aggregate cross-validation following a preparatory training phase. Our work has connections to prequential analysis and intrinsic Bayes factors but is motivated through a different course.
Bayesian leave-one-out cross-validation for large data
Magnusson, Måns, Andersen, Michael Riis, Jonasson, Johan, Vehtari, Aki
Model inference, such as model comparison, model checking, and model selection, is an important part of model development. Leave-one-out cross-validation (LOO) is a general approach for assessing the generalizability of a model, but unfortunately, LOO does not scale well to large datasets. We propose a combination of using approximate inference techniques and probability-proportional-to-size-sampling (PPS) for fast LOO model evaluation for large datasets. We provide both theoretical and empirical results showing good properties for large data.