Cross Validation


Error bounds in estimating the out-of-sample prediction error using leave-one-out cross validation in high-dimensions

arXiv.org Machine Learning

We study the problem of out-of-sample risk estimation in the high dimensional regime where both the sample size $n$ and number of features $p$ are large, and $n/p$ can be less than one. Extensive empirical evidence confirms the accuracy of leave-one-out cross validation (LO) for out-of-sample risk estimation. Yet, a unifying theoretical evaluation of the accuracy of LO in high-dimensional problems has remained an open problem. This paper aims to fill this gap for penalized regression in the generalized linear family. With minor assumptions about the data generating process, and without any sparsity assumptions on the regression coefficients, our theoretical analysis obtains finite sample upper bounds on the expected squared error of LO in estimating the out-of-sample error. Our bounds show that the error goes to zero as $n,p \rightarrow \infty$, even when the dimension $p$ of the feature vectors is comparable with or greater than the sample size $n$. One technical advantage of the theory is that it can be used to clarify and connect some results from the recent literature on scalable approximate LO.


Approximate Cross-validation: Guarantees for Model Assessment and Selection

arXiv.org Machine Learning

Cross-validation (CV) is a popular approach for assessing and selecting predictive models. However, when the number of folds is large, CV suffers from a need to repeatedly refit a learning procedure on a large number of training datasets. Recent work in empirical risk minimization (ERM) approximates the expensive refitting with a single Newton step warm-started from the full training set optimizer. While this can greatly reduce runtime, several open questions remain including whether these approximations lead to faithful model selection and whether they are suitable for non-smooth objectives. We address these questions with three main contributions: (i) we provide uniform non-asymptotic, deterministic model assessment guarantees for approximate CV; (ii) we show that (roughly) the same conditions also guarantee model selection performance comparable to CV; (iii) we provide a proximal Newton extension of the approximate CV framework for non-smooth prediction problems and develop improved assessment guarantees for problems such as l1-regularized ERM.


Towards new cross-validation-based estimators for Gaussian process regression: efficient adjoint computation of gradients

arXiv.org Machine Learning

We consider the problem of estimating the parameters of the covariance function of a Gaussian process by cross-validation. We suggest using new cross-validation criteria derived from the literature of scoring rules. We also provide an efficient method for computing the gradient of a cross-validation criterion. To the best of our knowledge, our method is more efficient than what has been proposed in the literature so far. It makes it possible to lower the complexity of jointly evaluating leave-one-out criteria and their gradients.



Regularization Path of Cross-Validation Error Lower Bounds

Neural Information Processing Systems

Careful tuning of a regularization parameter is indispensable in many machine learning tasks because it has a significant impact on generalization performances.Nevertheless, current practice of regularization parameter tuning is more of an art than a science, e.g., it is hard to tell how many grid-points would be needed in cross-validation (CV) for obtaining a solution with sufficiently small CV error.In this paper we propose a novel framework for computing a lower bound of the CV errors as a function of the regularization parameter, which we call regularization path of CV error lower bounds.The proposed framework can be used for providing a theoretical approximation guarantee on a set of solutions in the sense that how far the CV error of the current best solution could be away from best possible CV error in the entire range of the regularization parameters.We demonstrate through numerical experiments that a theoretically guaranteed a choice of regularization parameter in the above sense is possible with reasonable computational costs. Papers published at the Neural Information Processing Systems Conference.


Interpretable Machine Learning Model for Early Prediction of Mortality in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a Multicenter Retrospective Study and Cross Validation

arXiv.org Machine Learning

Background: Elderly patients with MODS have high risk of death and poor prognosis. The performance of current scoring systems assessing the severity of MODS and its mortality remains unsatisfactory. This study aims to develop an interpretable and generalizable model for early mortality prediction in elderly patients with MODS. Methods: The MIMIC-III, eICU-CRD and PLAGH-S databases were employed for model generation and evaluation. We used the eXtreme Gradient Boosting model with the SHapley Additive exPlanations method to conduct early and interpretable predictions of patients' hospital outcome. Three types of data source combinations and five typical evaluation indexes were adopted to develop a generalizable model. Findings: The interpretable model, with optimal performance developed by using MIMIC-III and eICU-CRD datasets, was separately validated in MIMIC-III, eICU-CRD and PLAGH-S datasets (no overlapping with training set). The performances of the model in predicting hospital mortality as validated by the three datasets were: AUC of 0.858, sensitivity of 0.834 and specificity of 0.705; AUC of 0.849, sensitivity of 0.763 and specificity of 0.784; and AUC of 0.838, sensitivity of 0.882 and specificity of 0.691, respectively. Comparisons of AUC between this model and baseline models with MIMIC-III dataset validation showed superior performances of this model; In addition, comparisons in AUC between this model and commonly used clinical scores showed significantly better performance of this model. Interpretation: The interpretable machine learning model developed in this study using fused datasets with large sample sizes was robust and generalizable. This model outperformed the baseline models and several clinical scores for early prediction of mortality in elderly ICU patients. The interpretative nature of this model provided clinicians with the ranking of mortality risk features.


How to Fix k-Fold Cross-Validation for Imbalanced Classification

#artificialintelligence

Model evaluation involves using the available dataset to fit a model and estimate its performance when making predictions on unseen examples. It is a challenging problem as both the training dataset used to fit the model and the test set used to evaluate it must be sufficiently large and representative of the underlying problem so that the resulting estimate of model performance is not too optimistic or pessimistic. The two most common approaches used for model evaluation are the train/test split and the k-fold cross-validation procedure. Both approaches can be very effective in general, although they can result in misleading results and potentially fail when used on classification problems with a severe class imbalance. In this tutorial, you will discover how to evaluate classifier models on imbalanced datasets.


Episode 2: A Cross Validation Framework

#artificialintelligence

Sign in to report inappropriate content. This is the second episode of my video series on applied machine learning. In this episode, we talk about the need for cross-validation and different types of cross-validation. We also see how one can implement a re-usable cross validation framework. In the end we are left with a cross validation framework that can be applied to almost all kinds of machine learning problem.


5 Reasons why you should use Cross-Validation in your Data Science Projects

#artificialintelligence

Cross-Validation is an essential tool in the Data Scientist toolbox. It allows us to utilize our data better. Before I present you my five reasons to use cross-validation, I want to briefly go over what cross-validation is and show some common strategies. The training set is used to train the model, and the validation/test set is used to validate it on data it has never seen before. The classic approach is to do a simple 80%-20% split, sometimes with different values like 70%-30% or 90%-10%.


When Cross-Validation is More Powerful than Regularization

#artificialintelligence

Regularization is a way of avoiding overfit by restricting the magnitude of model coefficients (or in deep learning, node weights). A simple example of regularization is the use of ridge or lasso regression to fit linear models in the presence of collinear variables or (quasi-)separation. The intuition is that smaller coefficients are less sensitive to idiosyncracies in the training data, and hence, less likely to overfit. Cross-validation is a way to safely reuse training data in nested model situations. This includes both the case of setting hyperparameters before fitting a model, and the case of fitting models (let's call them base learners) that are then used as variables in downstream models, as shown in Figure 1.