Goto

Collaborating Authors

 Perceptrons


Applications of Error Back-Propagation to Phonetic Classification

Neural Information Processing Systems

This paper is concerced with the use of error back-propagation in phonetic classification. Our objective is to investigate the basic characteristics of back-propagation, and study how the framework of multi-layer perceptrons can be exploited in phonetic recognition.


Performance of Synthetic Neural Network Classification of Noisy Radar Signals

Neural Information Processing Systems

This study evaluates the performance of the multilayer-perceptron and the frequency-sensitive competitive learning network in identifying five commercial aircraft from radar backscatter measurements. The performance of the neural network classifiers is compared with that of the nearest-neighbor and maximum-likelihood classifiers. Our results indicate that for this problem, the neural network classifiers are relatively insensitive to changes in the network topology, and to the noise level in the training data. While, for this problem, the traditional algorithms outperform these simple neural classifiers, we feel that neural networks show the potential for improved performance.



Learning by Choice of Internal Representations

Neural Information Processing Systems

We introduce a learning algorithm for multilayer neural networks composed of binary linear threshold elements. Whereas existing algorithms reduce the learning process to minimizing a cost function over the weights, our method treats the internal representations as the fundamental entities to be determined. Once a correct set of internal representations is arrived at, the weights are found by the local aild biologically plausible Perceptron Learning Rule (PLR). We tested our learning algorithm on four problems: adjacency, symmetry, parity and combined symmetry-parity.


The Boltzmann Perceptron Network: A Multi-Layered Feed-Forward Network Equivalent to the Boltzmann Machine

Neural Information Processing Systems

The concept of the stochastic Boltzmann machine (BM) is auractive for decision making and pattern classification purposes since the probability of attaining the network states is a function of the network energy. Hence, the probability of attaining particular energy minima may be associated with the probabilities of making certain decisions (or classifications). However, because of its stochastic nature, the complexity of the BM is fairly high and therefore such networks are not very likely to be used in practice. In this paper we suggest a way to alleviate this drawback by converting the stochastic BM into a deterministic network which we call the Boltzmann Perceptron Network (BPN). The BPN is functionally equivalent to the BM but has a feed-forward structure and low complexity.



Performance of Synthetic Neural Network Classification of Noisy Radar Signals

Neural Information Processing Systems

This study evaluates the performance of the multilayer-perceptron and the frequency-sensitive competitive learning network in identifying five commercial aircraft from radar backscatter measurements. The performance of the neural network classifiers is compared with that of the nearest-neighbor and maximum-likelihood classifiers. Our results indicate that for this problem, the neural network classifiers are relatively insensitive to changes in the network topology, and to the noise level in the training data. While, for this problem, the traditional algorithms outperform these simple neural classifiers, we feel that neural networks show the potential for improved performance.


Scaling and Generalization in Neural Networks: A Case Study

Neural Information Processing Systems

The issues of scaling and generalization have emerged as key issues in current studies of supervised learning from examples in neural networks. Questions such as how many training patterns and training cycles are needed for a problem of a given size and difficulty, how to represent the inllUh and how to choose useful training exemplars, are of considerable theoretical and practical importance. Several intuitive rules of thumb have been obtained from empirical studies, but as yet there are few rigorous results. In this paper we summarize a study Qf generalization in the simplest possible case-perceptron networks learning linearly separable functions. The task chosen was the majority function (i.e. return a 1 if a majority of the input units are on), a predicate with a number of useful properties. We find that many aspects of.generalization in multilayer networks learning large, difficult tasks are reproduced in this simple domain, in which concrete numerical results and even some analytic understanding can be achieved.



Review of Perceptrons

AI Magazine

It is important material, but it by a main text that consists mostly of belongs earlier in the book. I feel the Robert A. Chalmers engaging narratives about how some lack of a strong positive closing, the The authors of The Rise