Deep Learning
Gradient-based Hyperparameter Optimization through Reversible Learning
Maclaurin, Dougal, Duvenaud, David, Adams, Ryan P.
Tuning hyperparameters of learning algorithms is hard because gradients are usually unavailable. We compute exact gradients of cross-validation performance with respect to all hyperparameters by chaining derivatives backwards through the entire training procedure. These gradients allow us to optimize thousands of hyperparameters, including step-size and momentum schedules, weight initialization distributions, richly parameterized regularization schemes, and neural network architectures. We compute hyperparameter gradients by exactly reversing the dynamics of stochastic gradient descent with momentum.
A Probabilistic Theory of Deep Learning
Patel, Ankit B., Nguyen, Tan, Baraniuk, Richard G.
A grand challenge in machine learning is the development of computational algorithms that match or outperform humans in perceptual inference tasks that are complicated by nuisance variation. For instance, visual object recognition involves the unknown object position, orientation, and scale in object recognition while speech recognition involves the unknown voice pronunciation, pitch, and speed. Recently, a new breed of deep learning algorithms have emerged for high-nuisance inference tasks that routinely yield pattern recognition systems with near- or super-human capabilities. But a fundamental question remains: Why do they work? Intuitions abound, but a coherent framework for understanding, analyzing, and synthesizing deep learning architectures has remained elusive. We answer this question by developing a new probabilistic framework for deep learning based on the Deep Rendering Model: a generative probabilistic model that explicitly captures latent nuisance variation. By relaxing the generative model to a discriminative one, we can recover two of the current leading deep learning systems, deep convolutional neural networks and random decision forests, providing insights into their successes and shortcomings, as well as a principled route to their improvement.
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Nguyen, Anh, Yosinski, Jason, Clune, Jeff
Deep neural networks (DNNs) have recently been achieving state-of-the-art performance on a variety of pattern-recognition tasks, most notably visual classification problems. Given that DNNs are now able to classify objects in images with near-human-level performance, questions naturally arise as to what differences remain between computer and human vision. A recent study revealed that changing an image (e.g. of a lion) in a way imperceptible to humans can cause a DNN to label the image as something else entirely (e.g. mislabeling a lion a library). Here we show a related result: it is easy to produce images that are completely unrecognizable to humans, but that state-of-the-art DNNs believe to be recognizable objects with 99.99% confidence (e.g. labeling with certainty that white noise static is a lion). Specifically, we take convolutional neural networks trained to perform well on either the ImageNet or MNIST datasets and then find images with evolutionary algorithms or gradient ascent that DNNs label with high confidence as belonging to each dataset class. It is possible to produce images totally unrecognizable to human eyes that DNNs believe with near certainty are familiar objects, which we call "fooling images" (more generally, fooling examples). Our results shed light on interesting differences between human vision and current DNNs, and raise questions about the generality of DNN computer vision.
Denoising autoencoder with modulated lateral connections learns invariant representations of natural images
Rasmus, Antti, Raiko, Tapani, Valpola, Harri
Suitable lateral connections between encoder and decoder are shown to allow higher layers of a denoising autoencoder (dAE) to focus on invariant representations. In regular autoencoders, detailed information needs to be carried through the highest layers but lateral connections from encoder to decoder relieve this pressure. It is shown that abstract invariant features can be translated to detailed reconstructions when invariant features are allowed to modulate the strength of the lateral connection. Three dAE structures with modulated and additive lateral connections, and without lateral connections were compared in experiments using real-world images. The experiments verify that adding modulated lateral connections to the model 1) improves the accuracy of the probability model for inputs, as measured by denoising performance; 2) results in representations whose degree of invariance grows faster towards the higher layers; and 3) supports the formation of diverse invariant poolings.
A Theory of Feature Learning
van Rooyen, Brendan, Williamson, Robert C.
Feature Learning aims to extract relevant information contained in data sets in an automated fashion. It is driving force behind the current deep learning trend, a set of methods that have had widespread empirical success. What is lacking is a theoretical understanding of different feature learning schemes. This work provides a theoretical framework for feature learning and then characterizes when features can be learnt in an unsupervised fashion. We also provide means to judge the quality of features via rate-distortion theory and its generalizations.
Generalized K-fan Multimodal Deep Model with Shared Representations
Chen, Gang, Srihari, Sargur N.
Multimodal learning with deep Boltzmann machines (DBMs) is an generative approach to fuse multimodal inputs, and can learn the shared representation via Contrastive Divergence (CD) for classification and information retrieval tasks. However, it is a 2-fan DBM model, and cannot effectively handle multiple prediction tasks. Moreover, this model cannot recover the hidden representations well by sampling from the conditional distribution when more than one modalities are missing. In this paper, we propose a K-fan deep structure model, which can handle the multi-input and muti-output learning problems effectively. In particular, the deep structure has K-branch for different inputs where each branch can be composed of a multi-layer deep model, and a shared representation is learned in an discriminative manner to tackle multimodal tasks. Given the deep structure, we propose two objective functions to handle two multi-input and multi-output tasks: joint visual restoration and labeling, and the multi-view multi-calss object recognition tasks. To estimate the model parameters, we initialize the deep model parameters with CD to maximize the joint distribution, and then we use backpropagation to update the model according to specific objective function. The experimental results demonstrate that the model can effectively leverages multi-source information and predict multiple tasks well over competitive baselines.
Effective Use of Word Order for Text Categorization with Convolutional Neural Networks
Convolutional neural network (CNN) is a neural network that can make use of the internal structure of data such as the 2D structure of image data. This paper studies CNN on text categorization to exploit the 1D structure (namely, word order) of text data for accurate prediction. Instead of using low-dimensional word vectors as input as is often done, we directly apply CNN to high-dimensional text data, which leads to directly learning embedding of small text regions for use in classification. In addition to a straightforward adaptation of CNN from image to text, a simple but new variation which employs bag-of-word conversion in the convolution layer is proposed. An extension to combine multiple convolution layers is also explored for higher accuracy. The experiments demonstrate the effectiveness of our approach in comparison with state-of-the-art methods.
Rotation-invariant convolutional neural networks for galaxy morphology prediction
Dieleman, Sander, Willett, Kyle W., Dambre, Joni
Measuring the morphological parameters of galaxies is a key requirement for studying their formation and evolution. Surveys such as the Sloan Digital Sky Survey (SDSS) have resulted in the availability of very large collections of images, which have permitted population-wide analyses of galaxy morphology. Morphological analysis has traditionally been carried out mostly via visual inspection by trained experts, which is time-consuming and does not scale to large ($\gtrsim10^4$) numbers of images. Although attempts have been made to build automated classification systems, these have not been able to achieve the desired level of accuracy. The Galaxy Zoo project successfully applied a crowdsourcing strategy, inviting online users to classify images by answering a series of questions. Unfortunately, even this approach does not scale well enough to keep up with the increasing availability of galaxy images. We present a deep neural network model for galaxy morphology classification which exploits translational and rotational symmetry. It was developed in the context of the Galaxy Challenge, an international competition to build the best model for morphology classification based on annotated images from the Galaxy Zoo project. For images with high agreement among the Galaxy Zoo participants, our model is able to reproduce their consensus with near-perfect accuracy ($> 99\%$) for most questions. Confident model predictions are highly accurate, which makes the model suitable for filtering large collections of images and forwarding challenging images to experts for manual annotation. This approach greatly reduces the experts' workload without affecting accuracy. The application of these algorithms to larger sets of training data will be critical for analysing results from future surveys such as the LSST.
Deep metric learning using Triplet network
Deep learning has proven itself as a successful set of models for learning useful semantic representations of data. These, however, are mostly implicitly learned as part of a classification task. In this paper we propose the triplet network model, which aims to learn useful representations by distance comparisons. A similar model was defined by Wang et al. (2014), tailor made for learning a ranking for image information retrieval. Here we demonstrate using various datasets that our model learns a better representation than that of its immediate competitor, the Siamese network. We also discuss future possible usage as a framework for unsupervised learning.
Explaining and Harnessing Adversarial Examples
Goodfellow, Ian J., Shlens, Jonathon, Szegedy, Christian
Several machine learning models, including neural networks, consistently misclassify adversarial examples---inputs formed by applying small but intentionally worst-case perturbations to examples from the dataset, such that the perturbed input results in the model outputting an incorrect answer with high confidence. Early attempts at explaining this phenomenon focused on nonlinearity and overfitting. We argue instead that the primary cause of neural networks' vulnerability to adversarial perturbation is their linear nature. This explanation is supported by new quantitative results while giving the first explanation of the most intriguing fact about them: their generalization across architectures and training sets. Moreover, this view yields a simple and fast method of generating adversarial examples. Using this approach to provide examples for adversarial training, we reduce the test set error of a maxout network on the MNIST dataset.