Deep Learning
Memory Networks
Weston, Jason, Chopra, Sumit, Bordes, Antoine
We describe a new class of learning models called memory networks. Memory networks reason with inference components combined with a long-term memory component; they learn how to use these jointly. The long-term memory can be read and written to, with the goal of using it for prediction. We investigate these models in the context of question answering (QA) where the long-term memory effectively acts as a (dynamic) knowledge base, and the output is a textual response. We evaluate them on a large-scale QA task, and a smaller, but more complex, toy task generated from a simulated world. In the latter, we show the reasoning power of such models by chaining multiple supporting sentences to answer questions that require understanding the intension of verbs.
Exploring Models and Data for Image Question Answering
Ren, Mengye, Kiros, Ryan, Zemel, Richard
This work aims to address the problem of image-based question-answering (QA) with new models and datasets. In our work, we propose to use neural networks and visual semantic embeddings, without intermediate stages such as object detection and image segmentation, to predict answers to simple questions about images. Our model performs 1.8 times better than the only published results on an existing image QA dataset. We also present a question generation algorithm that converts image descriptions, which are widely available, into QA form. We used this algorithm to produce an order-of-magnitude larger dataset, with more evenly distributed answers. A suite of baseline results on this new dataset are also presented.
Empirical Evaluation of Rectified Activations in Convolutional Network
Xu, Bing, Wang, Naiyan, Chen, Tianqi, Li, Mu
In this paper we investigate the performance of different types of rectified activation functions in convolutional neural network: standard rectified linear unit (ReLU), leaky rectified linear unit (Leaky ReLU), parametric rectified linear unit (PReLU) and a new randomized leaky rectified linear units (RReLU). We evaluate these activation function on standard image classification task. Our experiments suggest that incorporating a non-zero slope for negative part in rectified activation units could consistently improve the results. Thus our findings are negative on the common belief that sparsity is the key of good performance in ReLU. Moreover, on small scale dataset, using deterministic negative slope or learning it are both prone to overfitting. They are not as effective as using their randomized counterpart. By using RReLU, we achieved 75.68\% accuracy on CIFAR-100 test set without multiple test or ensemble.
Visual Learning of Arithmetic Operations
A simple Neural Network model is presented for end-to-end visual learning of arithmetic operations from pictures of numbers. The input consists of two pictures, each showing a 7-digit number. The output, also a picture, displays the number showing the result of an arithmetic operation (e.g., addition or subtraction) on the two input numbers. The concepts of a number, or of an operator, are not explicitly introduced. This indicates that addition is a simple cognitive task, which can be learned visually using a very small number of neurons. Other operations, e.g., multiplication, were not learnable using this architecture. Some tasks were not learnable end-to-end (e.g., addition with Roman numerals), but were easily learnable once broken into two separate sub-tasks: a perceptual \textit{Character Recognition} and cognitive \textit{Arithmetic} sub-tasks. This indicates that while some tasks may be easily learnable end-to-end, other may need to be broken into sub-tasks.
Deep Kalman Filters
Krishnan, Rahul G., Shalit, Uri, Sontag, David
Kalman Filters are one of the most influential models of time-varying phenomena. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption in a variety of disciplines. Motivated by recent variational methods for learning deep generative models, we introduce a unified algorithm to efficiently learn a broad spectrum of Kalman filters. Of particular interest is the use of temporal generative models for counterfactual inference. We investigate the efficacy of such models for counterfactual inference, and to that end we introduce the "Healing MNIST" dataset where long-term structure, noise and actions are applied to sequences of digits. We show the efficacy of our method for modeling this dataset. We further show how our model can be used for counterfactual inference for patients, based on electronic health record data of 8,000 patients over 4.5 years.
Natural Language Understanding with Distributed Representation
This is a lecture note for the course DS-GA 3001
Semi-Supervised Learning with Ladder Networks
Rasmus, Antti, Valpola, Harri, Honkala, Mikko, Berglund, Mathias, Raiko, Tapani
We combine supervised learning with unsupervised learning in deep neural networks. The proposed model is trained to simultaneously minimize the sum of supervised and unsupervised cost functions by backpropagation, avoiding the need for layer-wise pre-training. Our work builds on the Ladder network proposed by Valpola (2015), which we extend by combining the model with supervision. We show that the resulting model reaches state-of-the-art performance in semi-supervised MNIST and CIFAR-10 classification, in addition to permutation-invariant MNIST classification with all labels.
What Happened to My Dog in That Network: Unraveling Top-down Generators in Convolutional Neural Networks
Gallagher, Patrick W., Tang, Shuai, Tu, Zhuowen
Top-down information plays a central role in human perception, but plays relatively little role in many current state-of-the-art deep networks, such as Convolutional Neural Networks (CNNs). This work seeks to explore a path by which top-down information can have a direct impact within current deep networks. We explore this path by learning and using "generators" corresponding to the network internal effects of three types of transformation (each a restriction of a general affine transformation): rotation, scaling, and translation. We demonstrate how these learned generators can be used to transfer top-down information to novel settings, as mediated by the "feature flows" that the transformations (and the associated generators) correspond to inside the network. Specifically, we explore three aspects: 1) using generators as part of a method for synthesizing transformed images --- given a previously unseen image, produce versions of that image corresponding to one or more specified transformations, 2) "zero-shot learning" --- when provided with a feature flow corresponding to the effect of a transformation of unknown amount, leverage learned generators as part of a method by which to perform an accurate categorization of the amount of transformation, even for amounts never observed during training, and 3) (inside-CNN) "data augmentation" --- improve the classification performance of an existing network by using the learned generators to directly provide additional training "inside the CNN".
Black box variational inference for state space models
Archer, Evan, Park, Il Memming, Buesing, Lars, Cunningham, John, Paninski, Liam
Latent variable time-series models are among the most heavily used tools from machine learning and applied statistics. These models have the advantage of learning latent structure both from noisy observations and from the temporal ordering in the data, where it is assumed that meaningful correlation structure exists across time. A few highly-structured models, such as the linear dynamical system with linear-Gaussian observations, have closed-form inference procedures (e.g. the Kalman Filter), but this case is an exception to the general rule that exact posterior inference in more complex generative models is intractable. Consequently, much work in time-series modeling focuses on approximate inference procedures for one particular class of models. Here, we extend recent developments in stochastic variational inference to develop a `black-box' approximate inference technique for latent variable models with latent dynamical structure. We propose a structured Gaussian variational approximate posterior that carries the same intuition as the standard Kalman filter-smoother but, importantly, permits us to use the same inference approach to approximate the posterior of much more general, nonlinear latent variable generative models. We show that our approach recovers accurate estimates in the case of basic models with closed-form posteriors, and more interestingly performs well in comparison to variational approaches that were designed in a bespoke fashion for specific non-conjugate models.
The Limitations of Deep Learning in Adversarial Settings
Papernot, Nicolas, McDaniel, Patrick, Jha, Somesh, Fredrikson, Matt, Celik, Z. Berkay, Swami, Ananthram
Deep learning takes advantage of large datasets and computationally efficient training algorithms to outperform other approaches at various machine learning tasks. However, imperfections in the training phase of deep neural networks make them vulnerable to adversarial samples: inputs crafted by adversaries with the intent of causing deep neural networks to misclassify. In this work, we formalize the space of adversaries against deep neural networks (DNNs) and introduce a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs. In an application to computer vision, we show that our algorithms can reliably produce samples correctly classified by human subjects but misclassified in specific targets by a DNN with a 97% adversarial success rate while only modifying on average 4.02% of the input features per sample. We then evaluate the vulnerability of different sample classes to adversarial perturbations by defining a hardness measure. Finally, we describe preliminary work outlining defenses against adversarial samples by defining a predictive measure of distance between a benign input and a target classification.