Goto

Collaborating Authors

 Deep Learning


Structured Pruning of Deep Convolutional Neural Networks

arXiv.org Machine Learning

Real time application of deep learning algorithms is often hindered by high computational complexity and frequent memory accesses. Network pruning is a promising technique to solve this problem. However, pruning usually results in irregular network connections that not only demand extra representation efforts but also do not fit well on parallel computation. We introduce structured sparsity at various scales for convolutional neural networks, which are channel wise, kernel wise and intra kernel strided sparsity. This structured sparsity is very advantageous for direct computational resource savings on embedded computers, parallel computing environments and hardware based systems. To decide the importance of network connections and paths, the proposed method uses a particle filtering approach. The importance weight of each particle is assigned by computing the misclassification rate with corresponding connectivity pattern. The pruned network is re-trained to compensate for the losses due to pruning. While implementing convolutions as matrix products, we particularly show that intra kernel strided sparsity with a simple constraint can significantly reduce the size of kernel and feature map matrices. The pruned network is finally fixed point optimized with reduced word length precision. This results in significant reduction in the total storage size providing advantages for on-chip memory based implementations of deep neural networks.


Sufficient Forecasting Using Factor Models

arXiv.org Machine Learning

We consider forecasting a single time series when there is a large number of predictors and a possible nonlinear effect. The dimensionality was first reduced via a high-dimensional (approximate) factor model implemented by the principal component analysis. Using the extracted factors, we develop a novel forecasting method called the sufficient forecasting, which provides a set of sufficient predictive indices, inferred from high-dimensional predictors, to deliver additional predictive power. The projected principal component analysis will be employed to enhance the accuracy of inferred factors when a semi-parametric (approximate) factor model is assumed. Our method is also applicable to cross-sectional sufficient regression using extracted factors. The connection between the sufficient forecasting and the deep learning architecture is explicitly stated. The sufficient forecasting correctly estimates projection indices of the underlying factors even in the presence of a nonparametric forecasting function. The proposed method extends the sufficient dimension reduction to high-dimensional regimes by condensing the cross-sectional information through factor models. We derive asymptotic properties for the estimate of the central subspace spanned by these projection directions as well as the estimates of the sufficient predictive indices. We further show that the natural method of running multiple regression of target on estimated factors yields a linear estimate that actually falls into this central subspace. Our method and theory allow the number of predictors to be larger than the number of observations. We finally demonstrate that the sufficient forecasting improves upon the linear forecasting in both simulation studies and an empirical study of forecasting macroeconomic variables.


Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks

arXiv.org Machine Learning

Effective training of deep neural networks suffers from two main issues. The first is that the parameter spaces of these models exhibit pathological curvature. Recent methods address this problem by using adaptive preconditioning for Stochastic Gradient Descent (SGD). These methods improve convergence by adapting to the local geometry of parameter space. A second issue is overfitting, which is typically addressed by early stopping. However, recent work has demonstrated that Bayesian model averaging mitigates this problem. The posterior can be sampled by using Stochastic Gradient Langevin Dynamics (SGLD). However, the rapidly changing curvature renders default SGLD methods inefficient. Here, we propose combining adaptive preconditioners with SGLD. In support of this idea, we give theoretical properties on asymptotic convergence and predictive risk. We also provide empirical results for Logistic Regression, Feedforward Neural Nets, and Convolutional Neural Nets, demonstrating that our preconditioned SGLD method gives state-of-the-art performance on these models.


Implementation of deep learning algorithm for automatic detection of brain tumors using intraoperative IR-thermal mapping data

arXiv.org Machine Learning

The efficiency of deep machine learning for automatic delineation of tumor areas has been demonstrated for intraoperative neuronavigation using active IR-mapping with the use of the cold test. The proposed approach employs a matrix IR-imager to remotely register the space-time distribution of surface temperature pattern, which is determined by the dynamics of local cerebral blood flow. The advantages of this technique are non-invasiveness, zero risks for the health of patients and medical staff, low implementation and operational costs, ease and speed of use. Traditional IR-diagnostic technique has a crucial limitation - it involves a diagnostician who determines the boundaries of tumor areas, which gives rise to considerable uncertainty, which can lead to diagnosis errors that are difficult to control. The current study demonstrates that implementing deep learning algorithms allows to eliminate the explained drawback.


Latent Variable Modeling with Diversity-Inducing Mutual Angular Regularization

arXiv.org Machine Learning

Latent Variable Models (LVMs) are a large family of machine learning models providing a principled and effective way to extract underlying patterns, structure and knowledge from observed data. Due to the dramatic growth of volume and complexity of data, several new challenges have emerged and cannot be effectively addressed by existing LVMs: (1) How to capture long-tail patterns that carry crucial information when the popularity of patterns is distributed in a power-law fashion? (2) How to reduce model complexity and computational cost without compromising the modeling power of LVMs? (3) How to improve the interpretability and reduce the redundancy of discovered patterns? To addresses the three challenges discussed above, we develop a novel regularization technique for LVMs, which controls the geometry of the latent space during learning to enable the learned latent components of LVMs to be diverse in the sense that they are favored to be mutually different from each other, to accomplish long-tail coverage, low redundancy, and better interpretability. We propose a mutual angular regularizer (MAR) to encourage the components in LVMs to have larger mutual angles. The MAR is non-convex and non-smooth, entailing great challenges for optimization. To cope with this issue, we derive a smooth lower bound of the MAR and optimize the lower bound instead. We show that the monotonicity of the lower bound is closely aligned with the MAR to qualify the lower bound as a desirable surrogate of the MAR. Using neural network (NN) as an instance, we analyze how the MAR affects the generalization performance of NN. On two popular latent variable models --- restricted Boltzmann machine and distance metric learning, we demonstrate that MAR can effectively capture long-tail patterns, reduce model complexity without sacrificing expressivity and improve interpretability.


DeepWriterID: An End-to-end Online Text-independent Writer Identification System

arXiv.org Machine Learning

Owing to the rapid growth of touchscreen mobile terminals and pen-based interfaces, handwriting-based writer identification systems are attracting increasing attention for personal authentication, digital forensics, and other applications. However, most studies on writer identification have not been satisfying because of the insufficiency of data and difficulty of designing good features under various conditions of handwritings. Hence, we introduce an end-to-end system, namely DeepWriterID, employed a deep convolutional neural network (CNN) to address these problems. A key feature of DeepWriterID is a new method we are proposing, called DropSegment. It designs to achieve data augmentation and improve the generalized applicability of CNN. For sufficient feature representation, we further introduce path signature feature maps to improve performance. Experiments were conducted on the NLPR handwriting database. Even though we only use pen-position information in the pen-down state of the given handwriting samples, we achieved new state-of-the-art identification rates of 95.72% for Chinese text and 98.51% for English text.


A Deep Generative Deconvolutional Image Model

arXiv.org Machine Learning

A deep generative model is developed for representation and analysis of images, based on a hierarchical convolutional dictionary-learning framework. Stochastic {\em unpooling} is employed to link consecutive layers in the model, yielding top-down image generation. A Bayesian support vector machine is linked to the top-layer features, yielding max-margin discrimination. Deep deconvolutional inference is employed when testing, to infer the latent features, and the top-layer features are connected with the max-margin classifier for discrimination tasks. The model is efficiently trained using a Monte Carlo expectation-maximization (MCEM) algorithm, with implementation on graphical processor units (GPUs) for efficient large-scale learning, and fast testing. Excellent results are obtained on several benchmark datasets, including ImageNet, demonstrating that the proposed model achieves results that are highly competitive with similarly sized convolutional neural networks.


Action-Conditional Video Prediction using Deep Networks in Atari Games

arXiv.org Artificial Intelligence

Motivated by vision-based reinforcement learning (RL) problems, in particular Atari games from the recent benchmark Aracade Learning Environment (ALE), we consider spatio-temporal prediction problems where future (image-)frames are dependent on control variables or actions as well as previous frames. While not composed of natural scenes, frames in Atari games are high-dimensional in size, can involve tens of objects with one or more objects being controlled by the actions directly and many other objects being influenced indirectly, can involve entry and departure of objects, and can involve deep partial observability. We propose and evaluate two deep neural network architectures that consist of encoding, action-conditional transformation, and decoding layers based on convolutional neural networks and recurrent neural networks. Experimental results show that the proposed architectures are able to generate visually-realistic frames that are also useful for control over approximately 100-step action-conditional futures in some games. To the best of our knowledge, this paper is the first to make and evaluate long-term predictions on high-dimensional video conditioned by control inputs.


Variational Dropout and the Local Reparameterization Trick

arXiv.org Machine Learning

We investigate a local reparameterizaton technique for greatly reducing the variance of stochastic gradients for variational Bayesian inference (SGVB) of a posterior over model parameters, while retaining parallelizability. This local reparameterization translates uncertainty about global parameters into local noise that is independent across datapoints in the minibatch. Such parameterizations can be trivially parallelized and have variance that is inversely proportional to the minibatch size, generally leading to much faster convergence. Additionally, we explore a connection with dropout: Gaussian dropout objectives correspond to SGVB with local reparameterization, a scale-invariant prior and proportionally fixed posterior variance. Our method allows inference of more flexibly parameterized posteriors; specifically, we propose variational dropout, a generalization of Gaussian dropout where the dropout rates are learned, often leading to better models. The method is demonstrated through several experiments.


Using machine learning for medium frequency derivative portfolio trading

arXiv.org Machine Learning

We use machine learning for designing a medium frequency trading strategy for a portfolio of 5 year and 10 year US Treasury note futures. We formulate this as a classification problem where we predict the weekly direction of movement of the portfolio using features extracted from a deep belief network trained on technical indicators of the portfolio constituents. The experimentation shows that the resulting pipeline is effective in making a profitable trade.