Goto

Collaborating Authors

 Deep Learning


Deep Poisson Factor Modeling

Neural Information Processing Systems

We propose a new deep architecture for topic modeling, based on Poisson Factor Analysis (PFA) modules. The model is composed of a Poisson distribution to model observed vectors of counts, as well as a deep hierarchy of hidden binary units. Rather than using logistic functions to characterize the probability that a latent binary unit is on, we employ a Bernoulli-Poisson link, which allows PFA modules to be used repeatedly in the deep architecture. We also describe an approach to build discriminative topic models, by adapting PFA modules. We derive efficient inference via MCMC and stochastic variational methods, that scale with the number of non-zeros in the data and binary units, yielding significant efficiency, relative to models based on logistic links. Experiments on several corpora demonstrate the advantages of our model when compared to related deep models.


Spectral Representations for Convolutional Neural Networks

Neural Information Processing Systems

Discrete Fourier transforms provide a significant speedup in the computation of convolutions in deep learning. In this work, we demonstrate that, beyond its advantages for efficient computation, the spectral domain also provides a powerful representation in which to model and train convolutional neural networks (CNNs).We employ spectral representations to introduce a number of innovations to CNN design. First, we propose spectral pooling, which performs dimensionality reduction by truncating the representation in the frequency domain. This approach preserves considerably more information per parameter than other pooling strategies and enables flexibility in the choice of pooling output dimensionality. This representation also enables a new form of stochastic regularization by randomized modification of resolution. We show that these methods achieve competitive results on classification and approximation tasks, without using any dropout or max-pooling. Finally, we demonstrate the effectiveness of complex-coefficient spectral parameterization of convolutional filters. While this leaves the underlying model unchanged, it results in a representation that greatly facilitates optimization. We observe on a variety of popular CNN configurations that this leads to significantly faster convergence during training.


Bidirectional Recurrent Neural Networks as Generative Models

Neural Information Processing Systems

Bidirectional recurrent neural networks (RNN) are trained to predict both in the positive and negative time directions simultaneously. They have not been used commonly in unsupervised tasks, because a probabilistic interpretation of the model has been difficult. Recently, two different frameworks, GSN and NADE, provide a connection between reconstruction and probabilistic modeling, which makes the interpretation possible. As far as we know, neither GSN or NADE have been studied in the context of time series before.As an example of an unsupervised task, we study the problem of filling in gaps in high-dimensional time series with complex dynamics. Although unidirectional RNNs have recently been trained successfully to model such time series, inference in the negative time direction is non-trivial. We propose two probabilistic interpretations of bidirectional RNNs that can be used to reconstruct missing gaps efficiently. Our experiments on text data show that both proposed methods are much more accurate than unidirectional reconstructions, although a bit less accurate than a computationally complex bidirectional Bayesian inference on the unidirectional RNN. We also provide results on music data for which the Bayesian inference is computationally infeasible, demonstrating the scalability of the proposed methods.


Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Neural Information Processing Systems

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully-convolutional network that simultaneously predicts object bounds and objectness scores at each position. RPNs are trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. With a simple alternating optimization, RPN and Fast R-CNN can be trained to share convolutional features. For the very deep VGG-16 model, our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007 (73.2% mAP) and 2012 (70.4% mAP) using 300 proposals per image. Code is available at https://github.com/ShaoqingRen/faster_rcnn.


Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images

Neural Information Processing Systems

We introduce Embed to Control (E2C), a method for model learning and control of non-linear dynamical systems from raw pixel images. E2C consists of a deep generative model, belonging to the family of variational autoencoders, that learns to generate image trajectories from a latent space in which the dynamics is constrained to be locally linear. Our model is derived directly from an optimal control formulation in latent space, supports long-term prediction of image sequences and exhibits strong performance on a variety of complex control problems.


Recursive Training of 2D-3D Convolutional Networks for Neuronal Boundary Prediction

Neural Information Processing Systems

Efforts to automate the reconstruction of neural circuits from 3D electron microscopic (EM) brain images are critical for the field of connectomics. An important computation for reconstruction is the detection of neuronal boundaries. Images acquired by serial section EM, a leading 3D EM technique, are highly anisotropic, with inferior quality along the third dimension. For such images, the 2D max-pooling convolutional network has set the standard for performance at boundary detection. Here we achieve a substantial gain in accuracy through three innovations. Following the trend towards deeper networks for object recognition, we use a much deeper network than previously employed for boundary detection. Second, we incorporate 3D as well as 2D filters, to enable computations that use 3D context. Finally, we adopt a recursively trained architecture in which a first network generates a preliminary boundary map that is provided as input along with the original image to a second network that generates a final boundary map. Backpropagation training is accelerated by ZNN, a new implementation of 3D convolutional networks that uses multicore CPU parallelism for speed. Our hybrid 2D-3D architecture could be more generally applicable to other types of anisotropic 3D images, including video, and our recursive framework for any image labeling problem.


Learning Continuous Control Policies by Stochastic Value Gradients

Neural Information Processing Systems

We present a unified framework for learning continuous control policies usingbackpropagation. It supports stochastic control by treating stochasticity in theBellman equation as a deterministic function of exogenous noise. The productis a spectrum of general policy gradient algorithms that range from model-freemethods with value functions to model-based methods without value functions.We use learned models but only require observations from the environment insteadof observations from model-predicted trajectories, minimizing the impactof compounded model errors. We apply these algorithms first to a toy stochasticcontrol problem and then to several physics-based control problems in simulation.One of these variants, SVG(1), shows the effectiveness of learning models, valuefunctions, and policies simultaneously in continuous domains.


Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets

Neural Information Processing Systems

Despite the recent achievements in machine learning, we are still very far from achieving real artificial intelligence. In this paper, we discuss the limitations of standard deep learning approaches and show that some of these limitations can be overcome by learning how to grow the complexity of a model in a structured way. Specifically, we study the simplest sequence prediction problems that are beyond the scope of what is learnable with standard recurrent networks, algorithmically generated sequences which can only be learned by models which have the capacity to count and to memorize sequences. We show that some basic algorithms can be learned from sequential data using a recurrent network associated with a trainable memory.


Bayesian dark knowledge

Neural Information Processing Systems

We consider the problem of Bayesian parameter estimation for deep neural networks, which is important in problem settings where we may have little data, and/ or where we need accurate posterior predictive densities p(y|x, D), e.g., for applications involving bandits or active learning. One simple approach to this is to use online Monte Carlo methods, such as SGLD (stochastic gradient Langevin dynamics). Unfortunately, such a method needs to store many copies of the parameters (which wastes memory), and needs to make predictions using many versions of the model (which wastes time).We describe a method for “distilling” a Monte Carlo approximation to the posterior predictive density into a more compact form, namely a single deep neural network. We compare to two very recent approaches to Bayesian neural networks, namely an approach based on expectation propagation [HLA15] and an approach based on variational Bayes [BCKW15]. Our method performs better than both of these, is much simpler to implement, and uses less computation at test time.


The Poisson Gamma Belief Network

arXiv.org Machine Learning

To infer a multilayer representation of high-dimensional count vectors, we propose the Poisson gamma belief network (PGBN) that factorizes each of its layers into the product of a connection weight matrix and the nonnegative real hidden units of the next layer. The PGBN's hidden layers are jointly trained with an upward-downward Gibbs sampler, each iteration of which upward samples Dirichlet distributed connection weight vectors starting from the first layer (bottom data layer), and then downward samples gamma distributed hidden units starting from the top hidden layer. The gamma-negative binomial process combined with a layer-wise training strategy allows the PGBN to infer the width of each layer given a fixed budget on the width of the first layer. The PGBN with a single hidden layer reduces to Poisson factor analysis. Example results on text analysis illustrate interesting relationships between the width of the first layer and the inferred network structure, and demonstrate that the PGBN, whose hidden units are imposed with correlated gamma priors, can add more layers to increase its performance gains over Poisson factor analysis, given the same limit on the width of the first layer.