Goto

Collaborating Authors

 Generative AI


RAPHAEL: Text-to-Image Generation via Large Mixtureof Diffusion Paths

Neural Information Processing Systems

Text-to-image generation has recently witnessed remarkable achievements. We introduce a text-conditional image diffusion model, termed RAPHAEL, to generate highly artistic images, which accurately portray the text prompts, encompassing multiple nouns, adjectives, and verbs. This is achieved by stacking tens of mixtureof-experts (MoEs) layers, i.e., space-MoE and time-MoE layers, enabling billions of diffusion paths (routes) from the network input to the output. Each path intuitively functions as a "painter" for depicting a particular textual concept onto a specified image region at a diffusion timestep. Comprehensive experiments reveal that RAPHAEL outperforms recent cutting-edge models, such as Stable Diffusion, ERNIE-ViLG 2.0, DeepFloyd, and DALL-E 2, in terms of both image quality and aesthetic appeal. Firstly, RAPHAEL exhibits superior performance in switching images across diverse styles, such as Japanese comics, realism, cyberpunk, and ink illustration. Secondly, a single model with three billion parameters, trained on 1, 000 A100 GPUs for two months, achieves a state-of-the-art zero-shot FID score of 6.61 on the COCO dataset.


TWIGMA: A dataset of AI-Generated Images with Metadata From Twitter

Neural Information Processing Systems

Recent progress in generative artificial intelligence (gen-AI) has enabled the generation of photo-realistic and artistically-inspiring photos at a single click, catering to millions of users online. To explore how people use gen-AI models such as DALLE and StableDiffusion, it is critical to understand the themes, contents, and variations present in the AI-generated photos. In this work, we introduce TWIGMA (TWItter Generative-ai images with MetadatA), a comprehensive dataset encompassing over 800,000 gen-AI images collected from Jan 2021 to March 2023 on Twitter, with associated metadata (e.g., tweet text, creation date, number of likes), available at https://zenodo.org/records/8031785. Through a comparative analysis of TWIGMA with natural images and human artwork, we find that gen-AI images possess distinctive characteristics and exhibit, on average, lower variability when compared to their non-gen-AI counterparts. Additionally, we find that the similarity between a gen-AI image and natural images is inversely correlated with the number of likes. Finally, we observe a longitudinal shift in the themes of AI-generated images on Twitter, with users increasingly sharing artistically sophisticated content such as intricate human portraits, whereas their interest in simple subjects such as natural scenes and animals has decreased. Our findings underscore the significance of TWIGMA as a unique data resource for studying AI-generated images.


Learning semantic similarity in a continuous space

Neural Information Processing Systems

We address the problem of learning semantic representation of questions to measure similarity between pairs as a continuous distance metric. Our work naturally extends Word Mover's Distance (WMD) [1] by representing text documents as normal distributions instead of bags of embedded words. Our learned metric measures the dissimilarity between two questions as the minimum amount of distance the intent (hidden representation) of one question needs to "travel" to match the intent of another question. We first learn to repeat, reformulate questions to infer intents as normal distributions with a deep generative model [2] (variational auto encoder). Semantic similarity between pairs is then learned discriminatively as an optimal transport distance metric (Wasserstein 2) with our novel variational siamese framework. Among known models that can read sentences individually, our proposed framework achieves competitive results on Quora duplicate questions dataset. Our work sheds light on how deep generative models can approximate distributions (semantic representations) to effectively measure semantic similarity with meaningful distance metrics from Information Theory.


Anthropics new AI model resorted to blackmail during testing, but its also really good at coding

Mashable

What started with Microsoft Build, continued with Google I/O, and ended with Anthropic Code with Claude, plus a big hardware interruption from OpenAI, the week has finally come to a close. AI announcements from the developer conferences jockeyed for news dominance this week, but OpenAI managed to make headlines without an event by announcing that it's going to start making AI devices with iPhone designer Jony Ives We'll get to that, plus all the major AI features from Google and Microsoft and details about Anthropic's new models. Take a look at the AI news of the week, then enjoy a well-deserved weekend. On Thursday, Anthropic introduced the next generation of its Claude models: Opus 4 and Sonnet 4. Claude Opus 4 is the bigger, more powerful model, while Sonnet 4 is smaller and nimbler. Anthropic said both models scored higher than their rivals on agentic AI benchmarks and said they're particularly good for coding and reasoning tasks.



Bias and Generalization in Deep Generative Models: An Empirical Study

Neural Information Processing Systems

In high dimensional settings, density estimation algorithms rely crucially on their inductive bias. Despite recent empirical success, the inductive bias of deep generative models is not well understood. In this paper we propose a framework to systematically investigate bias and generalization in deep generative models of images. Inspired by experimental methods from cognitive psychology, we probe each learning algorithm with carefully designed training datasets to characterize when and how existing models generate novel attributes and their combinations. We identify similarities to human psychology and verify that these patterns are consistent across commonly used models and architectures.


Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding

Neural Information Processing Systems

Imagen builds on the power of large transformer language models in understanding text and hinges on the strength of diffusion models in high-fidelity image generation. Our key discovery is that generic large language models (e.g. T5), pretrained on text-only corpora, are surprisingly effective at encoding text for image synthesis: increasing the size of the language model in Imagen boosts both sample fidelity and image-text alignment much more than increasing the size of the image diffusion model. Imagen achieves a new state-of-the-art FID score of 7.27 on the COCO dataset, without ever training on COCO, and human raters find Imagen samples to be on par with the COCO data itself in image-text alignment. To assess text-to-image models in greater depth, we introduce DrawBench, a comprehensive and challenging benchmark for text-to-image models. With DrawBench, we compare Imagen with recent methods including VQ-GAN+CLIP, Latent Diffusion Models, GLIDE and DALL-E 2, and find that human raters prefer Imagen over other models in side-by-side comparisons, both in terms of sample quality and image-text alignment.


Deep Generative Model for Periodic Graphs

Neural Information Processing Systems

Periodic graphs are graphs consisting of repetitive local structures, such as crystal nets and polygon mesh. Their generative modeling has great potential in real-world applications such as material design and graphics synthesis. Classical models either rely on domain-specific predefined generation principles (e.g., in crystal net design), or follow geometry-based prescribed rules. Recently, deep generative models have shown great promise in automatically generating general graphs. However, their advancement into periodic graphs has not been well explored due to several key challenges in 1) maintaining graph periodicity; 2) disentangling local and global patterns; and 3) efficiency in learning repetitive patterns. To address them, this paper proposes Periodical-Graph Disentangled Variational Auto-encoder (PGD-VAE), a new deep generative model for periodic graphs that can automatically learn, disentangle, and generate local and global graph patterns.


Supplementary Material for Text Promptable Surgical Instrument Segmentation with Vision-Language Models Meng Wei

Neural Information Processing Systems

In the supplementary material, we include additional method details, experimental results and analysis, and visualizations that could not be accommodated in the main text due to space constraints. Below, we provide the surgical instrument prompts generated by utilizing OpenAI GPT-4 [8] and Google Bard [2]. They are used in our experiments section. OpenAI GPT-4 based prompts The input template for OpenAI GPT-4 is defined as: Please describe the appearance of [class_name] in endoscopic surgery, and change the description to a phrase with subject, and not use colons. We obtain the following prompts for different surgical instruments: Bipolar forceps.