Goto

Collaborating Authors

 Rote Learning


Quantifying In-Context Reasoning Effects and Memorization Effects in LLMs

arXiv.org Artificial Intelligence

In this study, we propose an axiomatic system to define and quantify the precise memorization and in-context reasoning effects used by the large language model (LLM) for language generation. These effects are formulated as non-linear interactions between tokens/words encoded by the LLM. Specifically, the axiomatic system enables us to categorize the memorization effects into foundational memorization effects and chaotic memorization effects, and further classify in-context reasoning effects into enhanced inference patterns, eliminated inference patterns, and reversed inference patterns. Besides, the decomposed effects satisfy the sparsity property and the universal matching property, which mathematically guarantee that the LLM's confidence score can be faithfully decomposed into the memorization effects and in-context reasoning effects. Experiments show that the clear disentanglement of memorization effects and in-context reasoning effects enables a straightforward examination of detailed inference patterns encoded by LLMs.


Exploring prompts to elicit memorization in masked language model-based named entity recognition

arXiv.org Artificial Intelligence

This paper focuses on analyzing prompts' impact on detecting the memorization of 6 masked language model-based named entity recognition models. Specifically, we employ a diverse set of 400 automatically generated prompts, and a pairwise dataset where each pair consists of one person's name from the training set and another name out of the set. A prompt completed with a person's name serves as input for getting the model's confidence in predicting this name. Finally, the prompt performance of detecting model memorization is quantified by the percentage of name pairs for which the model has higher confidence for the name from the training set. We show that the performance of different prompts varies by as much as 16 percentage points on the same model, and prompt engineering further increases the gap. Moreover, our experiments demonstrate that prompt performance is model-dependent but does generalize across different name sets. A comprehensive analysis indicates how prompt performance is influenced by prompt properties, contained tokens, and the model's self-attention weights on the prompt.


Quantifying Memorization of Domain-Specific Pre-trained Language Models using Japanese Newspaper and Paywalls

arXiv.org Artificial Intelligence

Dominant pre-trained language models (PLMs) have been successful in high-quality natural language generation. However, the analysis of their generation is not mature: do they acquire generalizable linguistic abstractions, or do they simply memorize and recover substrings of the training data? Especially, few studies focus on domain-specific PLM. In this study, we pre-trained domain-specific GPT-2 models using a limited corpus of Japanese newspaper articles and quantified memorization of training data by comparing them with general Japanese GPT-2 models. Our experiments revealed that domain-specific PLMs sometimes "copy and paste" on a large scale. Furthermore, we replicated the empirical finding that memorization is related to duplication, model size, and prompt length, in Japanese the same as in previous English studies. Our evaluations are relieved from data contamination concerns by focusing on newspaper paywalls, which prevent their use as training data. We hope that our paper encourages a sound discussion such as the security and copyright of PLMs.


Benchmarking Chinese Commonsense Reasoning of LLMs: From Chinese-Specifics to Reasoning-Memorization Correlations

arXiv.org Artificial Intelligence

We introduce CHARM, the first benchmark for comprehensively and in-depth evaluating the commonsense reasoning ability of large language models (LLMs) in Chinese, which covers both globally known and Chinese-specific commonsense. We evaluated 7 English and 12 Chinese-oriented LLMs on CHARM, employing 5 representative prompt strategies for improving LLMs' reasoning ability, such as Chain-of-Thought. Our findings indicate that the LLM's language orientation and the task's domain influence the effectiveness of the prompt strategy, which enriches previous research findings. We built closely-interconnected reasoning and memorization tasks, and found that some LLMs struggle with memorizing Chinese commonsense, affecting their reasoning ability, while others show differences in reasoning despite similar memorization performance. We also evaluated the LLMs' memorization-independent reasoning abilities and analyzed the typical errors. Our study precisely identified the LLMs' strengths and weaknesses, providing the clear direction for optimization. It can also serve as a reference for studies in other fields. We will release CHARM at https://github.com/opendatalab/CHARM .


Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models

arXiv.org Artificial Intelligence

While many have shown how Large Language Models (LLMs) can be applied to a diverse set of tasks, the critical issues of data contamination and memorization are often glossed over. In this work, we address this concern for tabular data. Specifically, we introduce a variety of different techniques to assess whether a language model has seen a tabular dataset during training. This investigation reveals that LLMs have memorized many popular tabular datasets verbatim. We then compare the few-shot learning performance of LLMs on datasets that were seen during training to the performance on datasets released after training. We find that LLMs perform better on datasets seen during training, indicating that memorization leads to overfitting. At the same time, LLMs show non-trivial performance on novel datasets and are surprisingly robust to data transformations. We then investigate the in-context statistical learning abilities of LLMs. Without fine-tuning, we find them to be limited. This suggests that much of the few-shot performance on novel datasets is due to the LLM's world knowledge. Overall, our results highlight the importance of testing whether an LLM has seen an evaluation dataset during pre-training. We make the exposure tests we developed available as the tabmemcheck Python package at https://github.com/interpretml/LLM-Tabular-Memorization-Checker


Towards Better Generalization in Open-Domain Question Answering by Mitigating Context Memorization

arXiv.org Artificial Intelligence

Open-domain Question Answering (OpenQA) aims at answering factual questions with an external large-scale knowledge corpus. However, real-world knowledge is not static; it updates and evolves continually. Such a dynamic characteristic of knowledge poses a vital challenge for these models, as the trained models need to constantly adapt to the latest information to make sure that the answers remain accurate. In addition, it is still unclear how well an OpenQA model can transfer to completely new knowledge domains. In this paper, we investigate the generalization performance of a retrieval-augmented QA model in two specific scenarios: 1) adapting to updated versions of the same knowledge corpus; 2) switching to completely different knowledge domains. We observe that the generalization challenges of OpenQA models stem from the reader's over-reliance on memorizing the knowledge from the external corpus, which hinders the model from generalizing to a new knowledge corpus. We introduce Corpus-Invariant Tuning (CIT), a simple but effective training strategy, to mitigate the knowledge over-memorization by controlling the likelihood of retrieved contexts during training. Extensive experimental results on multiple OpenQA benchmarks show that CIT achieves significantly better generalizability without compromising the model's performance in its original corpus and domain.


Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs

arXiv.org Artificial Intelligence

In this paper, we introduce a black-box prompt optimization method that uses an attacker LLM agent to uncover higher levels of memorization in a victim agent, compared to what is revealed by prompting the target model with the training data directly, which is the dominant approach of quantifying memorization in LLMs. We use an iterative rejection-sampling optimization process to find instruction-based prompts with two main characteristics: (1) minimal overlap with the training data to avoid presenting the solution directly to the model, and (2) maximal overlap between the victim model's output and the training data, aiming to induce the victim to spit out training data. We observe that our instruction-based prompts generate outputs with 23.7% higher overlap with training data compared to the baseline prefix-suffix measurements. Our findings show that (1) instruction-tuned models can expose pre-training data as much as their base-models, if not more so, (2) contexts other than the original training data can lead to leakage, and (3) using instructions proposed by other LLMs can open a new avenue of automated attacks that we should further study and explore. The code can be found at https://github.com/Alymostafa/Instruction_based_attack .


Localizing Paragraph Memorization in Language Models

arXiv.org Machine Learning

Can we localize the weights and mechanisms used by a language model to memorize and recite entire paragraphs of its training data? In this paper, we show that while memorization is spread across multiple layers and model components, gradients of memorized paragraphs have a distinguishable spatial pattern, being larger in lower model layers than gradients of non-memorized examples. Moreover, the memorized examples can be unlearned by fine-tuning only the high-gradient weights. We localize a low-layer attention head that appears to be especially involved in paragraph memorization. This head is predominantly focusing its attention on distinctive, rare tokens that are least frequent in a corpus-level unigram distribution. Next, we study how localized memorization is across the tokens in the prefix by perturbing tokens and measuring the caused change in the decoding. A few distinctive tokens early in a prefix can often corrupt the entire continuation. Overall, memorized continuations are not only harder to unlearn, but also to corrupt than non-memorized ones.


Meaningful Learning: Advancing Abstract Reasoning in Large Language Models via Generic Fact Guidance

arXiv.org Artificial Intelligence

Large language models (LLMs) have developed impressive performance and strong explainability across various reasoning scenarios, marking a significant stride towards mimicking human-like intelligence. Despite this, when tasked with simple questions supported by a generic fact, LLMs often fail to provide consistent and precise answers, indicating a deficiency in abstract reasoning abilities. This has sparked a vigorous debate about whether LLMs are genuinely reasoning or merely memorizing. In light of this, we design a preliminary study to quantify and delve into the abstract reasoning abilities of existing LLMs. Our findings reveal a substantial discrepancy between their general reasoning and abstract reasoning performances. To relieve this problem, we tailor an abstract reasoning dataset (AbsR) together with a meaningful learning paradigm to teach LLMs how to leverage generic facts for reasoning purposes. The results show that our approach not only boosts the general reasoning performance of LLMs but also makes considerable strides towards their capacity for abstract reasoning, moving beyond simple memorization or imitation to a more nuanced understanding and application of generic facts.


Beyond Memorization: The Challenge of Random Memory Access in Language Models

arXiv.org Artificial Intelligence

Recent developments in Language Models (LMs) have shown their effectiveness in NLP tasks, particularly in knowledge-intensive tasks. However, the mechanisms underlying knowledge storage and memory access within their parameters remain elusive. In this paper, we investigate whether a generative LM (e.g., GPT-2) is able to access its memory sequentially or randomly. Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content. We find that techniques including recitation and permutation improve the random memory access capability of LMs. Furthermore, by applying this intervention to realistic scenarios of open-domain question answering, we validate that enhancing random access by recitation leads to notable improvements in question answering. The code to reproduce our experiments can be found at https://github.com/sail-sg/lm-random-memory-access.