Markov Models
Efficient and Sharp Off-Policy Evaluation in Robust Markov Decision Processes Wen Sun
We study the evaluation of a policy under best-and worst-case perturbations to a Markov decision process (MDP), using transition observations from the original MDP, whether they are generated under the same or a different policy. This is an important problem when there is the possibility of a shift between historical and future environments, e.g.
A neurally plausible model learns successor representations in partially observable environments
Animals need to devise strategies to maximize returns while interacting with their environment based on incoming noisy sensory observations. Task-relevant states, such as the agent's location within an environment or the presence of a predator, are often not directly observable but must be inferred using available sensory information. Successor representations (SR) have been proposed as a middle-ground between model-based and model-free reinforcement learning strategies, allowing for fast value computation and rapid adaptation to changes in the reward function or goal locations. Indeed, recent studies suggest that features of neural responses are consistent with the SR framework. However, it is not clear how such representations might be learned and computed in partially observed, noisy environments. Here, we introduce a neurally plausible model using distributional successor features, which builds on the distributed distributional code for the representation and computation of uncertainty, and which allows for efficient value function computation in partially observed environments via the successor representation. We show that distributional successor features can support reinforcement learning in noisy environments in which direct learning of successful policies is infeasible.
Exploration Bonus for Regret Minimization in Discrete and Continuous Average Reward MDPs
Jian QIAN, Ronan Fruit, Matteo Pirotta, Alessandro Lazaric
The exploration bonus is an effective approach to manage the explorationexploitation trade-off in Markov Decision Processes (MDPs). While it has been analyzed in infinite-horizon discounted and finite-horizon problems, we focus on designing and analysing the exploration bonus in the more challenging infinitehorizon undiscounted setting.
N-Agent Ad Hoc Teamwork
Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algorithm usually assumes control over only a single agent in the scenario. However, many cooperative settings in the real world are much less restrictive. For example, in an autonomous driving scenario, a company might train its cars with the same learning algorithm, yet once on the road, these cars must cooperate with cars from another company. Towards expanding the class of scenarios that cooperative learning methods may optimally address, we introduce N-agent ad hoc teamwork (NAHT), where a set of autonomous agents must interact and cooperate with dynamically varying numbers and types of teammates. This paper formalizes the problem, and proposes the Policy Optimization with Agent Modelling (POAM) algorithm. POAM is a policy gradient, multi-agent reinforcement learning approach to the NAHT problem that enables adaptation to diverse teammate behaviors by learning representations of teammate behaviors. Empirical evaluation on tasks from the multi-agent particle environment and Star-Craft II shows that POAM improves cooperative task returns compared to baseline approaches, and enables out-of-distribution generalization to unseen teammates.
Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo
Alain Durmus, Umut Simsekli, Eric Moulines, Roland Badeau, Gaël RICHARD
Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) algorithms have become increasingly popular for Bayesian inference in large-scale applications. Even though these methods have proved useful in several scenarios, their performance is often limited by their bias. In this study, we propose a novel sampling algorithm that aims to reduce the bias of SG-MCMC while keeping the variance at a reasonable level. Our approach is based on a numerical sequence acceleration method, namely the Richardson-Romberg extrapolation, which simply boils down to running almost the same SG-MCMC algorithm twice in parallel with different step sizes. We illustrate our framework on the popular Stochastic Gradient Langevin Dynamics (SGLD) algorithm and propose a novel SG-MCMC algorithm referred to as Stochastic Gradient Richardson-Romberg Langevin Dynamics (SGRRLD). We provide formal theoretical analysis and show that SGRRLD is asymptotically consistent, satisfies a central limit theorem, and its non-asymptotic bias and the mean squared-error can be bounded. Our results show that SGRRLD attains higher rates of convergence than SGLD in both finite-time and asymptotically, and it achieves the theoretical accuracy of the methods that are based on higher-order integrators. We support our findings using both synthetic and real data experiments.
Reward Machines for Deep RL in Noisy and Uncertain Environments
Reward Machines provide an automaton-inspired structure for specifying instructions, safety constraints, and other temporally extended reward-worthy behaviour. By exposing the underlying structure of a reward function, they enable the decomposition of an RL task, leading to impressive gains in sample efficiency. Although Reward Machines and similar formal specifications have a rich history of application towards sequential decision-making problems, prior frameworks have traditionally ignored ambiguity and uncertainty when interpreting the domainspecific vocabulary forming the building blocks of the reward function. Such uncertainty critically arises in many real-world settings due to factors like partial observability or noisy sensors. In this work, we explore the use of Reward Machines for Deep RL in noisy and uncertain environments. We characterize this problem as a POMDP and propose a suite of RL algorithms that exploit task structure under uncertain interpretation of the domain-specific vocabulary. Through theory and experiments, we expose pitfalls in naive approaches to this problem while simultaneously demonstrating how task structure can be successfully leveraged under noisy interpretations of the vocabulary. Code and videos are available at https://github.com/andrewli77/
Diffusion Spectral Representation for Reinforcement Learning
Diffusion-based models have achieved notable empirical successes in reinforcement learning (RL) due to their expressiveness in modeling complex distributions. Despite existing methods being promising, the key challenge of extending existing methods for broader real-world applications lies in the computational cost at inference time, i.e., sampling from a diffusion model is considerably slow as it often requires tens to hundreds of iterations to generate even one sample. To circumvent this issue, we propose to leverage the flexibility of diffusion models for RL from a representation learning perspective. In particular, by exploiting the connection between diffusion models and energy-based models, we develop Diffusion Spectral Representation (Diff-SR), a coherent algorithm framework that enables extracting sufficient representations for value functions in Markov decision processes (MDP) and partially observable Markov decision processes (POMDP). We further demonstrate how Diff-SR facilitates efficient policy optimization and practical algorithms while explicitly bypassing the difficulty and inference cost of sampling from the diffusion model. Finally, we provide comprehensive empirical studies to verify the benefits of Diff-SR in delivering robust and advantageous performance across various benchmarks with both fully and partially observable settings.
Finding good policies in average-reward Markov Decision Processes without prior knowledge
We revisit the identification of an ε-optimal policy in average-reward Markov Decision Processes (MDP). In such MDPs, two measures of complexity have appeared in the literature: the diameter, D, and the optimal bias span, H, which satisfy H D. Prior work have studied the complexity of ε-optimal policy identification only when a generative model is available.
Game Design for Eliciting Distinguishable Behavior
Fan Yang, Liu Leqi, Yifan Wu, Zachary Lipton, Pradeep K. Ravikumar, Tom M. Mitchell, William W. Cohen
The ability to inferring latent psychological traits from human behavior is key to developing personalized human-interacting machine learning systems. Approaches to infer such traits range from surveys to manually-constructed experiments and games. However, these traditional games are limited because they are typically designed based on heuristics. In this paper, we formulate the task of designing behavior diagnostic games that elicit distinguishable behavior as a mutual information maximization problem, which can be solved by optimizing a variational lower bound. Our framework is instantiated by using prospect theory to model varying player traits, and Markov Decision Processes to parameterize the games. We validate our approach empirically, showing that our designed games can successfully distinguish among players with different traits, outperforming manually-designed ones by a large margin.