Undirected Networks

Causal Machine Learning Workshop SEW-HSG University of St.Gallen


Program: Monday Session I Maximilian Kasy, "Adaptive treatment assignment in experiments for policy choice" Bezirgen Veliyev, "Functional Sequential Treatment Allocation" Keynote Uri Shalit about "Machine learning and causal inference: a two-way road": "This talk will have two parts. In the first we will discuss a framework we developed for learning individualized treatment recommendations from observational health data, merging ideas from machine learning and causal inference. We will see examples of our framework applied to two crucial health problems using data from tens of thousands of patients, and discuss some important causal-inference challenges that come to focus in this setting. In the second part we will show how we use ideas from the causal inference literature to address long standing problems in machine learning: off-policy evaluation in a partially observable Markov decision process (POMDP), and learning predictive models that are stable against distributional shifts." Heterogeneous effects of training programmes for unemployed in Belgium" Daniel Jacob, "Does Tenure make you love your Job?" Nicolaj Mühlbach, "Heterogeneous Treatment Effects of an Early Retirement Reform" Tuesday Session III Dmitry Arkhangelsky, "Double-Robust Identification for Causal Panel Data Models" Martin Spindler, "Uniform Inference in High-Dimensional Gaussian Graphical Models" Keynote Stefan Wager about "Designing Loss Functions for Causal Machine Learning": "Given advances in machine learning over the past decades, it is now possible to accurately solve difficult non-parametric prediction problems in a way that is routine and reproducible.

Lifted Weighted Mini-Bucket

Neural Information Processing Systems

Many graphical models, such as Markov Logic Networks (MLNs) with evidence, possess highly symmetric substructures but no exact symmetries. Unfortunately, there are few principled methods that exploit these symmetric substructures to perform efficient approximate inference. In this paper, we present a lifted variant of the Weighted Mini-Bucket elimination algorithm which provides a principled way to (i) exploit the highly symmetric substructure of MLN models, and (ii) incorporate high-order inference terms which are necessary for high quality approximate inference. Our method has significant control over the accuracy-time trade-off of the approximation, allowing us to generate any-time approximations. Experimental results demonstrate the utility of this class of approximations, especially in models with strong repulsive potentials.

Learning Chordal Markov Networks via Branch and Bound

Neural Information Processing Systems

We present a new algorithmic approach for the task of finding a chordal Markov network structure that maximizes a given scoring function. The algorithm is based on branch and bound and integrates dynamic programming for both domain pruning and for obtaining strong bounds for search-space pruning. Empirically, we show that the approach dominates in terms of running times a recent integer programming approach (and thereby also a recent constraint optimization approach) for the problem. Papers published at the Neural Information Processing Systems Conference.

Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials

Neural Information Processing Systems

In this paper, we prove that every multivariate polynomial with even degree can be decomposed into a sum of convex and concave polynomials. Motivated by this property, we exploit the concave-convex procedure to perform inference on continuous Markov random fields with polynomial potentials. In particular, we show that the concave-convex decomposition of polynomials can be expressed as a sum-of-squares optimization, which can be efficiently solved via semidefinite programming. We demonstrate the effectiveness of our approach in the context of 3D reconstruction, shape from shading and image denoising, and show that our approach significantly outperforms existing approaches in terms of efficiency as well as the quality of the retrieved solution. Papers published at the Neural Information Processing Systems Conference.

Theoretical Analysis of Heuristic Search Methods for Online POMDPs

Neural Information Processing Systems

Planning in partially observable environments remains a challenging problem, despite significant recent advances in offline approximation techniques. A few online methods have also been proposed recently, and proven to be remarkably scalable, but without the theoretical guarantees of their offline counterparts. Thus it seems natural to try to unify offline and online techniques, preserving the theoretical properties of the former, and exploiting the scalability of the latter. In this paper, we provide theoretical guarantees on an anytime algorithm for POMDPs which aims to reduce the error made by approximate offline value iteration algorithms through the use of an efficient online searching procedure. The algorithm uses search heuristics based on an error analysis of lookahead search, to guide the online search towards reachable beliefs with the most potential to reduce error.

Modeling image patches with a directed hierarchy of Markov random fields

Neural Information Processing Systems

We describe an efficient learning procedure for multilayer generative models that combine the best aspects of Markov random fields and deep, directed belief nets. The generative models can be learned one layer at a time and when learning is complete they have a very fast inference procedure for computing a good approximation to the posterior distribution in all of the hidden layers. Each hidden layer has its own MRF whose energy function is modulated by the top-down directed connections from the layer above. To generate from the model, each layer in turn must settle to equilibrium given its top-down input. We show that this type of model is good at capturing the statistics of patches of natural images.

Nonparametric Bayesian Texture Learning and Synthesis

Neural Information Processing Systems

We present a nonparametric Bayesian method for texture learning and synthesis. A texture image is represented by a 2D-Hidden Markov Model (2D-HMM) where the hidden states correspond to the cluster labeling of textons and the transition matrix encodes their spatial layout (the compatibility between adjacent textons). The HDP makes use of Dirichlet process prior which favors regular textures by penalizing the model complexity. This framework (HDP-2D-HMM) learns the texton vocabulary and their spatial layout jointly and automatically. The HDP-2D-HMM results in a compact representation of textures which allows fast texture synthesis with comparable rendering quality over the state-of-the-art image-based rendering methods.

Partially Observed Maximum Entropy Discrimination Markov Networks

Neural Information Processing Systems

Learning graphical models with hidden variables can offer semantic insights to complex data and lead to salient structured predictors without relying on expensive, sometime unattainable fully annotated training data. While likelihood-based methods have been extensively explored, to our knowledge, learning structured prediction models with latent variables based on the max-margin principle remains largely an open problem. In this paper, we present a partially observed Maximum Entropy Discrimination Markov Network (PoMEN) model that attempts to combine the advantages of Bayesian and margin based paradigms for learning Markov networks from partially labeled data. PoMEN leads to an averaging prediction rule that resembles a Bayes predictor that is more robust to overfitting, but is also built on the desirable discriminative laws resemble those of the M$ 3$N. We develop an EM-style algorithm utilizing existing convex optimization algorithms for M$ 3$N as a subroutine.

Distributionally Robust Markov Decision Processes

Neural Information Processing Systems

We consider Markov decision processes where the values of the parameters are uncertain. This uncertainty is described by a sequence of nested sets (that is, each set contains the previous one), each of which corresponds to a probabilistic guarantee for a different confidence level so that a set of admissible probability distributions of the unknown parameters is specified. This formulation models the case where the decision maker is aware of and wants to exploit some (yet imprecise) a-priori information of the distribution of parameters, and arises naturally in practice where methods to estimate the confidence region of parameters abound. We propose a decision criterion based on *distributional robustness*: the optimal policy maximizes the expected total reward under the most adversarial probability distribution over realizations of the uncertain parameters that is admissible (i.e., it agrees with the a-priori information). We show that finding the optimal distributionally robust policy can be reduced to a standard robust MDP where the parameters belong to a single uncertainty set, hence it can be computed in polynomial time under mild technical conditions.