Collaborating Authors

Undirected Networks

Optimality Guarantees for Particle Belief Approximation of POMDPs

Journal of Artificial Intelligence Research

Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems. However, POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid, which is often the case for physical systems. While recent online sampling-based POMDP algorithms that plan with observation likelihood weighting have shown practical effectiveness, a general theory characterizing the approximation error of the particle filtering techniques that these algorithms use has not previously been proposed. Our main contribution is bounding the error between any POMDP and its corresponding finite sample particle belief MDP (PB-MDP) approximation. This fundamental bridge between PB-MDPs and POMDPs allows us to adapt any sampling-based MDP algorithm to a POMDP by solving the corresponding particle belief MDP, thereby extending the convergence guarantees of the MDP algorithm to the POMDP . Practically, this is implemented by using the particle filter belief transition model as the generative model for the MDP solver. While this requires access to the observation density model from the POMDP, it only increases the transition sampling complexity of the MDP solver by a factor of O (C), where C is the number of particles. Thus, when combined with sparse sampling MDP algorithms, this approach can yield algorithms for POMDPs that have no direct theoretical dependence on the size of the state and observation spaces. In addition to our theoretical contribution, we perform five numerical experiments on benchmark POMDPs to demonstrate that a simple MDP algorithm adapted using PB-MDP approximation, Sparse-PFT, achieves performance competitive with other leading continuous observation POMDP solvers.

A Markov Framework for Learning and Reasoning About Strategies in Professional Soccer

Journal of Artificial Intelligence Research

Strategy-optimization is a fundamental element of dynamic and complex team sports such as soccer, American football, and basketball. As the amount of data that is collected from matches in these sports has increased, so has the demand for data-driven decisionmaking support. If alternative strategies need to be balanced, a data-driven approach can uncover insights that are not available from qualitative analysis. This could tremendously aid teams in their match preparations. In this work, we propose a novel Markov modelbased framework for soccer that allows reasoning about the specific strategies teams use in order to gain insights into the efficiency of each strategy. The framework consists of two components: (1) a learning component, which entails modeling a team’s offensive behavior by learning a Markov decision process (MDP) from event data that is collected from the team’s matches, and (2) a reasoning component, which involves a novel application of probabilistic model checking to reason about the efficacy of the learned strategies of each team. In this paper, we provide an overview of this framework and illustrate it on several use cases using real-world event data from three leagues. Our results show that the framework can be used to reason about the shot decision-making of teams and to optimise the defensive strategies used when playing against a particular team. The general ideas presented in this framework can easily be extended to other sports.

On Centralized Critics in Multi-Agent Reinforcement Learning

Journal of Artificial Intelligence Research

Centralized Training for Decentralized Execution, where agents are trained offline in a centralized fashion and execute online in a decentralized manner, has become a popular approach in Multi-Agent Reinforcement Learning (MARL). In particular, it has become popular to develop actor-critic methods that train decentralized actors with a centralized critic where the centralized critic is allowed access global information of the entire system, including the true system state. Such centralized critics are possible given offline information and are not used for online execution. While these methods perform well in a number of domains and have become a de facto standard in MARL, using a centralized critic in this context has yet to be sufficiently analyzed theoretically or empirically. In this paper, we therefore formally analyze centralized and decentralized critic approaches, and analyze the effect of using state-based critics in partially observable environments. We derive theories contrary to the common intuition: critic centralization is not strictly beneficial, and using state values can be harmful. We further prove that, in particular, state-based critics can introduce unexpected bias and variance compared to history-based critics. Finally, we demonstrate how the theory applies in practice by comparing different forms of critics on a wide range of common multi-agent benchmarks. The experiments show practical issues such as the difficulty of representation learning with partial observability, which highlights why the theoretical problems are often overlooked in the literature.

Preconditioned Spectral Descent for Deep Learning David E. Carlson, 1 Edo Collins, 2

Neural Information Processing Systems

Deep learning presents notorious computational challenges. These challenges include, but are not limited to, the non-convexity of learning objectives and estimating the quantities needed for optimization algorithms, such as gradients. While we do not address the non-convexity, we present an optimization solution that exploits the so far unused "geometry" in the objective function in order to best make use of the estimated gradients. Previous work attempted similar goals with preconditioned methods in the Euclidean space, such as L-BFGS, RMSprop, and ADAgrad. In stark contrast, our approach combines a non-Euclidean gradient method with preconditioning. We provide evidence that this combination more accurately captures the geometry of the objective function compared to prior work. We theoretically formalize our arguments and derive novel preconditioned non-Euclidean algorithms. The results are promising in both computational time and quality when applied to Restricted Boltzmann Machines, Feedforward Neural Nets, and Convolutional Neural Nets.

Fast Bidirectional Probability Estimation in Markov Models

Neural Information Processing Systems

We develop a new bidirectional algorithm for estimating Markov chain multi-step transition probabilities: given a Markov chain, we want to estimate the probability of hitting a given target state in l steps after starting from a given source distribution. Given the target state t, we use a (reverse) local power iteration to construct an'expanded target distribution', which has the same mean as the quantity we want to estimate, but a smaller variance - this can then be sampled efficiently by a Monte Carlo algorithm. Our method extends to any Markov chain on a discrete (finite or countable) state-space, and can be extended to compute functions of multi-step transition probabilities such as PageRank, graph diffusions, hitting/return times, etc. Our main result is that in'sparse' Markov Chains - wherein the number of transitions between states is comparable to the number of states - the running time of our algorithm for a uniform-random target node is order-wise smaller than Monte Carlo and power iteration based algorithms; in particular, our method can estimate a probability p using only O(1/ p) running time.

Adaptive Stochastic Optimization: From Sets to Paths

Neural Information Processing Systems

It plays a crucial role in planning and learning under uncertainty, but is, unfortunately, computationally intractable in general. This paper introduces two conditions on the objective function, the marginal likelihood rate bound and the marginal likelihood bound, which, together with pointwise submodularity, enable efficient approximate solution of ASO. Several interesting classes of functions satisfy these conditions naturally, e.g., the version space reduction function for hypothesis learning. We describe Recursive Adaptive Coverage, a new ASO algorithm that exploits these conditions, and apply the algorithm to two robot planning tasks under uncertainty. In contrast to the earlier submodular optimization approach, our algorithm applies to ASO over both sets and paths.

Spectral Learning of Large Structured HMMs for Comparative Epigenomics Jimin Song UC San Diego

Neural Information Processing Systems

We develop a latent variable model and an efficient spectral algorithm motivated by the recent emergence of very large data sets of chromatin marks from multiple human cell types. A natural model for chromatin data in one cell type is a Hidden Markov Model (HMM); we model the relationship between multiple cell types by connecting their hidden states by a fixed tree of known structure. The main challenge with learning parameters of such models is that iterative methods such as EM are very slow, while naive spectral methods result in time and space complexity exponential in the number of cell types. We exploit properties of the tree structure of the hidden states to provide spectral algorithms that are more computationally efficient for current biological datasets. We provide sample complexity bounds for our algorithm and evaluate it experimentally on biological data from nine human cell types. Finally, we show that beyond our specific model, some of our algorithmic ideas can be applied to other graphical models.

Tractable Learning for Complex Probability Queries

Neural Information Processing Systems

Tractable learning aims to learn probabilistic models where inference is guaranteed to be efficient. However, the particular class of queries that is tractable depends on the model and underlying representation. Usually this class is MPE or conditional probabilities Pr(x|y) for joint assignments x, y. We propose a tractable learner that guarantees efficient inference for a broader class of queries. It simultaneously learns a Markov network and its tractable circuit representation, in order to guarantee and measure tractability. Our approach differs from earlier work by using Sentential Decision Diagrams (SDD) as the tractable language instead of Arithmetic Circuits (AC). SDDs have desirable properties, which more general representations such as ACs lack, that enable basic primitives for Boolean circuit compilation. This allows us to support a broader class of complex probability queries, including counting, threshold, and parity, in polytime.

Deep Knowledge Tracing Chris Piech ∗, Jonathan Bassen ∗, Jonathan Huang ∗ ‡, Surya Ganguli

Neural Information Processing Systems

Knowledge tracing--where a machine models the knowledge of a student as they interact with coursework--is a well established problem in computer supported education. Though effectively modeling student knowledge would have high educational impact, the task has many inherent challenges. In this paper we explore the utility of using Recurrent Neural Networks (RNNs) to model student learning. The RNN family of models have important advantages over previous methods in that they do not require the explicit encoding of human domain knowledge, and can capture more complex representations of student knowledge.