to

### All Machine Learning Algorithms You Should Know in 2021 - KDnuggets

As my knowledge in machine learning grows, so does the number of machine learning algorithms! This article will cover machine learning algorithms that are commonly used in the data science community. Keep in mind that I'll be elaborating on some algorithms more than others simply because this article would be as long as a book if I thoroughly explained every algorithm! I'm also going to try to minimize the amount of math in this article because I know it can be pretty daunting for those who aren't mathematically savvy. Instead, I'll try to give a concise summary of each and point out some of the key features.

### Maximum Entropy competes with Maximum Likelihood

Maximum entropy (MAXENT) method has a large number of applications in theoretical and applied machine learning, since it provides a convenient non-parametric tool for estimating unknown probabilities. The method is a major contribution of statistical physics to probabilistic inference. However, a systematic approach towards its validity limits is currently missing. Here we study MAXENT in a Bayesian decision theory set-up, i.e. assuming that there exists a well-defined prior Dirichlet density for unknown probabilities, and that the average Kullback-Leibler (KL) distance can be employed for deciding on the quality and applicability of various estimators. These allow to evaluate the relevance of various MAXENT constraints, check its general applicability, and compare MAXENT with estimators having various degrees of dependence on the prior, viz. the regularized maximum likelihood (ML) and the Bayesian estimators. We show that MAXENT applies in sparse data regimes, but needs specific types of prior information. In particular, MAXENT can outperform the optimally regularized ML provided that there are prior rank correlations between the estimated random quantity and its probabilities.

### Stochastic Gradient Descent with Large Learning Rate

As a simple and efficient optimization method in deep learning, stochastic gradient descent (SGD) has attracted tremendous attention. In the vanishing learning rate regime, SGD is now relatively well understood, and the majority of theoretical approaches to SGD set their assumptions in the continuous-time limit. However, the continuous-time predictions are unlikely to reflect the experimental observations well because the practice often runs in the large learning rate regime, where the training is faster and the generalization of models are often better. In this paper, we propose to study the basic properties of SGD and its variants in the non-vanishing learning rate regime. The focus is on deriving exactly solvable results and relating them to experimental observations. The main contributions of this work are to derive the stable distribution for discrete-time SGD in a quadratic loss function with and without momentum. Examples of applications of the proposed theory considered in this work include the approximation error of variants of SGD, the effect of mini-batch noise, the escape rate from a sharp minimum, and and the stationary distribution of a few second order methods.

### DenseHMM: Learning Hidden Markov Models by Learning Dense Representations

We propose DenseHMM - a modification of Hidden Markov Models (HMMs) that allows to learn dense representations of both the hidden states and the observables. Compared to the standard HMM, transition probabilities are not atomic but composed of these representations via kernelization. Our approach enables constraint-free and gradient-based optimization. We propose two optimization schemes that make use of this: a modification of the Baum-Welch algorithm and a direct co-occurrence optimization. The latter one is highly scalable and comes empirically without loss of performance compared to standard HMMs. We show that the non-linearity of the kernelization is crucial for the expressiveness of the representations. The properties of the DenseHMM like learned co-occurrences and log-likelihoods are studied empirically on synthetic and biomedical datasets.

### Polynomial-Time Algorithms for Counting and Sampling Markov Equivalent DAGs

Graphical modeling plays a key role in causal theory, allowing A key characteristic of an MEC is its size, i. e., the number to express complex causal phenomena in an elegant, of DAGs in the class. It indicates uncertainty of the causal mathematically sound way. One of the most popular graphical model inferred from observational data and it serves as an models are directed acyclic graphs (DAGs), which represent indicator for the performance of recovering true causal effects.

### On the Convergence of Continuous Constrained Optimization for Structure Learning

Structure learning of directed acyclic graphs (DAGs) is a fundamental problem in many scientific endeavors. A new line of work, based on NOTEARS (Zheng et al., 2018), reformulates the structure learning problem as a continuous optimization one by leveraging an algebraic characterization of DAG constraint. The constrained problem is typically solved using the augmented Lagrangian method (ALM) which is often preferred to the quadratic penalty method (QPM) by virtue of its convergence result that does not require the penalty coefficient to go to infinity, hence avoiding ill-conditioning. In this work, we review the standard convergence result of the ALM and show that the required conditions are not satisfied in the recent continuous constrained formulation for learning DAGs. We demonstrate empirically that its behavior is akin to that of the QPM which is prone to ill-conditioning, thus motivating the use of second-order method in this setting. We also establish the convergence guarantee of QPM to a DAG solution, under mild conditions, based on a property of the DAG constraint term.

### A connection between the pattern classification problem and the General Linear Model for statistical inference

A connection between the General Linear Model (GLM) in combination with classical statistical inference and the machine learning (MLE)-based inference is described in this paper. Firstly, the estimation of the GLM parameters is expressed as a Linear Regression Model (LRM) of an indicator matrix, that is, in terms of the inverse problem of regressing the observations. In other words, both approaches, i.e. GLM and LRM, apply to different domains, the observation and the label domains, and are linked by a normalization value at the least-squares solution. Subsequently, from this relationship we derive a statistical test based on a more refined predictive algorithm, i.e. the (non)linear Support Vector Machine (SVM) that maximizes the class margin of separation, within a permutation analysis. The MLE-based inference employs a residual score and includes the upper bound to compute a better estimation of the actual (real) error. Experimental results demonstrate how the parameter estimations derived from each model resulted in different classification performances in the equivalent inverse problem. Moreover, using real data the aforementioned predictive algorithms within permutation tests, including such model-free estimators, are able to provide a good trade-off between type I error and statistical power.

### Neurosymbolic AI: The 3rd Wave

Current advances in Artificial Intelligence (AI) and Machine Learning (ML) have achieved unprecedented impact across research communities and industry. Nevertheless, concerns about trust, safety, interpretability and accountability of AI were raised by influential thinkers. Many have identified the need for well-founded knowledge representation and reasoning to be integrated with deep learning and for sound explainability. Neural-symbolic computing has been an active area of research for many years seeking to bring together robust learning in neural networks with reasoning and explainability via symbolic representations for network models. In this paper, we relate recent and early research results in neurosymbolic AI with the objective of identifying the key ingredients of the next wave of AI systems. We focus on research that integrates in a principled way neural network-based learning with symbolic knowledge representation and logical reasoning. The insights provided by 20 years of neural-symbolic computing are shown to shed new light onto the increasingly prominent role of trust, safety, interpretability and accountability of AI. We also identify promising directions and challenges for the next decade of AI research from the perspective of neural-symbolic systems.

### Clustering and Semi-Supervised Classification for Clickstream Data via Mixture Models

Finite mixture models have been used for unsupervised learning for some time, and their use within the semi-supervised paradigm is becoming more commonplace. Clickstream data is one of the various emerging data types that demands particular attention because there is a notable paucity of statistical learning approaches currently available. A mixture of first-order continuous time Markov models is introduced for unsupervised and semi-supervised learning of clickstream data. This approach assumes continuous time, which distinguishes it from existing mixture model-based approaches; practically, this allows account to be taken of the amount of time each user spends on each webpage. The approach is evaluated, and compared to the discrete time approach, using simulated and real data.

### uBAM: Unsupervised Behavior Analysis and Magnification using Deep Learning

Motor behavior analysis is essential to biomedical research and clinical diagnostics as it provides a non-invasive strategy for identifying motor impairment and its change caused by interventions. State-of-the-art instrumented movement analysis is time- and cost-intensive, since it requires placing physical or virtual markers. Besides the effort required for marking keypoints or annotations necessary for training or finetuning a detector, users need to know the interesting behavior beforehand to provide meaningful keypoints. We introduce uBAM, a novel, automatic deep learning algorithm for behavior analysis by discovering and magnifying deviations. We propose an unsupervised learning of posture and behavior representations that enable an objective behavior comparison across subjects. A generative model with novel disentanglement of appearance and behavior magnifies subtle behavior differences across subjects directly in a video without requiring a detour via keypoints or annotations. Evaluations on rodents and human patients with neurological diseases demonstrate the wide applicability of our approach.