Learning Graphical Models
Active Invariant Causal Prediction: Experiment Selection through Stability Juan L. Gamella Christina Heinze-Deml Seminar for Statistics Seminar for Statistics ETH Zurich
A fundamental difficulty of causal learning is that causal models can generally not be fully identified based on observational data only. Interventional data, that is, data originating from different experimental environments, improves identifiability. However, the improvement depends critically on the target and nature of the interventions carried out in each experiment. Since in real applications experiments tend to be costly, there is a need to perform the right interventions such that as few as possible are required. In this work we propose a new active learning (i.e.
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng, Xiao Zhang, Faming Liang, Guang Lin
We propose a novel adaptive empirical Bayesian (AEB) method for sparse deep learning, where the sparsity is ensured via a class of self-adaptive spike-and-slab priors. The proposed method works by alternatively sampling from an adaptive hierarchical posterior distribution using stochastic gradient Markov Chain Monte Carlo (MCMC) and smoothly optimizing the hyperparameters using stochastic approximation (SA). We further prove the convergence of the proposed method to the asymptotically correct distribution under mild conditions. Empirical applications of the proposed method lead to the state-of-the-art performance on MNIST and Fashion MNIST with shallow convolutional neural networks (CNN) and the state-of-the-art compression performance on CIFAR10 with Residual Networks. The proposed method also improves resistance to adversarial attacks.
Integrating Markov processes with structural causal modeling enables counterfactual inference in complex systems
Robert Ness, Kaushal Paneri, Olga Vitek
This manuscript contributes a general and practical framework for casting a Markov process model of a system at equilibrium as a structural causal model, and carrying out counterfactual inference. Markov processes mathematically describe the mechanisms in the system, and predict the system's equilibrium behavior upon intervention, but do not support counterfactual inference. In contrast, structural causal models support counterfactual inference, but do not identify the mechanisms.
The surprising efficiency of temporal difference learning for rare event prediction
We quantify the efficiency of temporal difference (TD) learning over the direct, or Monte Carlo (MC), estimator for policy evaluation in reinforcement learning, with an emphasis on estimation of quantities related to rare events. Policy evaluation is complicated in the rare event setting by the long timescale of the event and by the need for relative accuracy in estimates of very small values. Specifically, we focus on least-squares TD (LSTD) prediction for finite state Markov chains, and show that LSTD can achieve relative accuracy far more efficiently than MC. We prove a central limit theorem for the LSTD estimator and upper bound the relative asymptotic variance by simple quantities characterizing the connectivity of states relative to the transition probabilities between them. Using this bound, we show that, even when both the timescale of the rare event and the relative error of the MC estimator are exponentially large in the number of states, LSTD maintains a fixed level of relative accuracy with a total number of observed transitions of the Markov chain that is only polynomially large in the number of states.
Shaping_Belief_States_with_Generative_Environment_Models_for_RL
When agents interact with a complex environment, they must form and maintain beliefs about the relevant aspects of that environment. We propose a way to efficiently train expressive generative models in complex environments. We show that a predictive algorithm with an expressive generative model can form stable belief-states in visually rich and dynamic 3D environments. More precisely, we show that the learned representation captures the layout of the environment as well as the position and orientation of the agent. Our experiments show that the model substantially improves data-efficiency on a number of reinforcement learning (RL) tasks compared with strong model-free baseline agents. We find that predicting multiple steps into the future (overshooting), in combination with an expressive generative model, is critical for stable representations to emerge. In practice, using expressive generative models in RL is computationally expensive and we propose a scheme to reduce this computational burden, allowing us to build agents that are competitive with model-free baselines.
3D Gaussian Splatting as Markov Chain Monte Carlo
While 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which can lead to poor-quality renderings, and reliance on a good initialization. In this work, we rethink the set of 3D Gaussians as a random sample drawn from an underlying probability distribution describing the physical representation of the scene--in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates can be converted as Stochastic Gradient Langevin Dynamics (SGLD) update by simply introducing noise. We then rewrite the densification and pruning strategies in 3D Gaussian Splatting as simply a deterministic state transition of MCMC samples, removing these heuristics from the framework. To do so, we revise the'cloning' of Gaussians into a relocalization scheme that approximately preserves sample probability. To encourage efficient use of Gaussians, we introduce a regularizer that promotes the removal of unused Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu
This paper studies a curious phenomenon in learning energy-based model (EBM) using MCMC. In each learning iteration, we generate synthesized examples by running a non-convergent, non-mixing, and non-persistent short-run MCMC toward the current model, always starting from the same initial distribution such as uniform noise distribution, and always running a fixed number of MCMC steps. After generating synthesized examples, we then update the model parameters according to the maximum likelihood learning gradient, as if the synthesized examples are fair samples from the current model. We treat this non-convergent short-run MCMC as a learned generator model or a flow model. We provide arguments for treating the learned non-convergent short-run MCMC as a valid model. We show that the learned short-run MCMC is capable of generating realistic images. More interestingly, unlike traditional EBM or MCMC, the learned short-run MCMC is capable of reconstructing observed images and interpolating between images, like generator or flow models. The code can be found in the Appendix.
Axioms for AI Alignment from Human Feedback Luise Ge Daniel Halpern Evi Micha Washington University in St. Louis Harvard University
In the context of reinforcement learning from human feedback (RLHF), the reward function is generally derived from maximum likelihood estimation of a random utility model based on pairwise comparisons made by humans. The problem of learning a reward function is one of preference aggregation that, we argue, largely falls within the scope of social choice theory. From this perspective, we can evaluate different aggregation methods via established axioms, examining whether these methods meet or fail well-known standards. We demonstrate that both the Bradley-Terry-Luce Model and its broad generalizations fail to meet basic axioms. In response, we develop novel rules for learning reward functions with strong axiomatic guarantees. A key innovation from the standpoint of social choice is that our problem has a linear structure, which greatly restricts the space of feasible rules and leads to a new paradigm that we call linear social choice.