Collaborating Authors

Control Theory

A Regret Minimization Approach to Iterative Learning Control Machine Learning

We consider the setting of iterative learning control, or model-based policy learning in the presence of uncertain, time-varying dynamics. In this setting, we propose a new performance metric, planning regret, which replaces the standard stochastic uncertainty assumptions with worst case regret. Based on recent advances in non-stochastic control, we design a new iterative algorithm for minimizing planning regret that is more robust to model mismatch and uncertainty. We provide theoretical and empirical evidence that the proposed algorithm outperforms existing methods on several benchmarks.

Learning-based vs Model-free Adaptive Control of a MAV under Wind Gust Artificial Intelligence

Navigation problems under unknown varying conditions are among the most important and well-studied problems in the control field. Classic model-based adaptive control methods can be applied only when a convenient model of the plant or environment is provided. Recent model-free adaptive control methods aim at removing this dependency by learning the physical characteristics of the plant and/or process directly from sensor feedback. Although there have been prior attempts at improving these techniques, it remains an open question as to whether it is possible to cope with real-world uncertainties in a control system that is fully based on either paradigm. We propose a conceptually simple learning-based approach composed of a full state feedback controller, tuned robustly by a deep reinforcement learning framework based on the Soft Actor-Critic algorithm. We compare it, in realistic simulations, to a model-free controller that uses the same deep reinforcement learning framework for the control of a micro aerial vehicle under wind gust. The results indicate the great potential of learning-based adaptive control methods in modern dynamical systems.

Safe and Efficient Model-free Adaptive Control via Bayesian Optimization Artificial Intelligence

Adaptive control approaches yield high-performance controllers when a precise system model or suitable parametrizations of the controller are available. Existing data-driven approaches for adaptive control mostly augment standard model-based methods with additional information about uncertainties in the dynamics or about disturbances. In this work, we propose a purely data-driven, model-free approach for adaptive control. Tuning low-level controllers based solely on system data raises concerns on the underlying algorithm safety and computational performance. Thus, our approach builds on GoOSE, an algorithm for safe and sample-efficient Bayesian optimization. We introduce several computational and algorithmic modifications in GoOSE that enable its practical use on a rotational motion system. We numerically demonstrate for several types of disturbances that our approach is sample efficient, outperforms constrained Bayesian optimization in terms of safety, and achieves the performance optima computed by grid evaluation. We further demonstrate the proposed adaptive control approach experimentally on a rotational motion system.

Distributed Adaptive Control: An ideal Cognitive Architecture candidate for managing a robotic recycling plant Artificial Intelligence

In the past decade, society has experienced notable growth in a variety of technological areas. However, the Fourth Industrial Revolution has not been embraced yet. Industry 4.0 imposes several challenges which include the necessity of new architectural models to tackle the uncertainty that open environments represent to cyber-physical systems (CPS). Waste Electrical and Electronic Equipment (WEEE) recycling plants stand for one of such open environments. Here, CPSs must work harmoniously in a changing environment, interacting with similar and not so similar CPSs, and adaptively collaborating with human workers. In this paper, we support the Distributed Adaptive Control (DAC) theory as a suitable Cognitive Architecture for managing a recycling plant. Specifically, a recursive implementation of DAC (between both singleagent and large-scale levels) is proposed to meet the expected demands of the European Project HR-Recycler. Additionally, with the aim of having a realistic benchmark for future implementations of the recursive DAC, a micro-recycling plant prototype is presented. Keywords: Cognitive Architecture, Distributed Adaptive Control, Recycling Plant, Navigation, Motor Control, Human-Robot Interaction.

Machine learning approach could improve radar in congested environments - Military Embedded Systems


Research being conducted by the U.S. Army Combat Capabilities Development Command (DEVCOM) is focused on a new machine learning approach that could improve radar performance in congested environments. Researchers from DEVCOM, Army Research Laboratory, and Virginia Tech have developed an automatic way for radars to operate in congested and limited-spectrum environments created by commercial 4G LTE and future 5G communications systems. The researchers claim they examined how future Department of Defense radar systems will share the spectrum with commercial communications systems. The team used machine learning to learn the behavior of ever-changing interference in the spectrum and find clean spectrum to maximize the radar performance. Once clean spectrum is identified, waveforms can be modified to best fit into the spectrum.

Go with the Flow: Adaptive Control for Neural ODEs Machine Learning

Despite their elegant formulation and lightweight memory cost, neural ordinary differential equations (NODEs) suffer from known representational limitations. In particular, the single flow learned by NODEs cannot express all homeomorphisms from a given data space to itself, and their static weight parametrization restricts the type of functions they can learn compared to discrete architectures with layer-dependent weights. Here, we describe a new module called neurally-controlled ODE (N-CODE) designed to improve the expressivity of NODEs. The parameters of N-CODE modules are dynamic variables governed by a trainable map from initial or current activation state, resulting in forms of open-loop and closed-loop control, respectively. A single module is sufficient for learning a distribution on non-autonomous flows that adaptively drive neural representations. We provide theoretical and empirical evidence that N-CODE circumvents limitations of previous models and show how increased model expressivity manifests in several domains. In supervised learning, we demonstrate that our framework achieves better performance than NODEs as measured by both training speed and testing accuracy. In unsupervised learning, we apply this control perspective to an image Autoencoder endowed with a latent transformation flow, greatly improving representational power over a vanilla model and leading to state-of-the-art image reconstruction on CIFAR-10.

Complementary Meta-Reinforcement Learning for Fault-Adaptive Control Machine Learning

Faults are endemic to all systems. Adaptive fault-tolerant control maintains degraded performance when faults occur as opposed to unsafe conditions or catastrophic events. In systems with abrupt faults and strict time constraints, it is imperative for control to adapt quickly to system changes to maintain system operations. We present a meta-reinforcement learning approach that quickly adapts its control policy to changing conditions. The approach builds upon model-agnostic meta learning (MAML). The controller maintains a complement of prior policies learned under system faults. This "library" is evaluated on a system after a new fault to initialize the new policy. This contrasts with MAML, where the controller derives intermediate policies anew, sampled from a distribution of similar systems, to initialize a new policy. Our approach improves sample efficiency of the reinforcement learning process. We evaluate our approach on an aircraft fuel transfer system under abrupt faults.

Explore More and Improve Regret in Linear Quadratic Regulators Machine Learning

Stabilizing the unknown dynamics of a control system and minimizing regret in control of an unknown system are among the main goals in control theory and reinforcement learning. In this work, we pursue both these goals for adaptive control of linear quadratic regulators (LQR). Prior works accomplish either one of these goals at the cost of the other one. The algorithms that are guaranteed to find a stabilizing controller suffer from high regret, whereas algorithms that focus on achieving low regret assume the presence of a stabilizing controller at the early stages of agent-environment interaction. In the absence of such a stabilizing controller, at the early stages, the lack of reasonable model estimates needed for (i) strategic exploration and (ii) design of controllers that stabilize the system, results in regret that scales exponentially in the problem dimensions. We propose a framework for adaptive control that exploits the characteristics of linear dynamical systems and deploys additional exploration in the early stages of agent-environment interaction to guarantee sooner design of stabilizing controllers. We show that for the classes of controllable and stabilizable LQRs, where the latter is a generalization of prior work, these methods achieve $\tilde{\mathcal{O}}(\sqrt{T})$ regret with a polynomial dependence in the problem dimensions.

Dynamic Bidding Strategies with Multivariate Feedback Control for Multiple Goals in Display Advertising Machine Learning

Real-Time Bidding (RTB) display advertising is a method for purchasing display advertising inventory in auctions that occur within milliseconds. The performance of RTB campaigns is generally measured with a series of Key Performance Indicators (KPIs) - measurements used to ensure that the campaign is cost-effective and that it is purchasing valuable inventory. While an RTB campaign should ideally meet all KPIs, simultaneous improvement tends to be very challenging, as an improvement to any one KPI risks a detrimental effect toward the others. Here we present an approach to simultaneously controlling multiple KPIs with a PID-based feedback-control system. This method generates a control score for each KPI, based on both the output of a PID controller module and a metric that quantifies the importance of each KPI for internal business needs. On regular intervals, this algorithm - Sequential Control - will choose the KPI with the greatest overall need for improvement. In this way, our algorithm is able to continually seek the greatest marginal improvements to its current state. Multiple methods of control can be associated with each KPI, and can be triggered either simultaneously or chosen stochastically, in order to avoid local optima. In both offline ad bidding simulations and testing on live traffic, our methods proved to be effective in simultaneously controlling multiple KPIs, and bringing them toward their respective goals.

Technical Report: Adaptive Control for Linearizable Systems Using On-Policy Reinforcement Learning Machine Learning

This paper proposes a framework for adaptively learning a feedback linearization-based tracking controller for an unknown system using discrete-time model-free policy-gradient parameter update rules. The primary advantage of the scheme over standard model-reference adaptive control techniques is that it does not require the learned inverse model to be invertible at all instances of time. This enables the use of general function approximators to approximate the linearizing controller for the system without having to worry about singularities. However, the discrete-time and stochastic nature of these algorithms precludes the direct application of standard machinery from the adaptive control literature to provide deterministic stability proofs for the system. Nevertheless, we leverage these techniques alongside tools from the stochastic approximation literature to demonstrate that with high probability the tracking and parameter errors concentrate near zero when a certain persistence of excitation condition is satisfied. A simulated example of a double pendulum demonstrates the utility of the proposed theory. 1 I. INTRODUCTION Many real-world control systems display nonlinear behaviors which are difficult to model, necessitating the use of control architectures which can adapt to the unknown dynamics online while maintaining certificates of stability. There are many successful model-based strategies for adaptively constructing controllers for uncertain systems [1], [2], [3], but these methods often require the presence of a simple, reasonably accurate parametric model of the system dynamics. Recently, however, there has been a resurgence of interest in the use of model-free reinforcement learning techniques to construct feedback controllers without the need for a reliable dynamics model [4], [5], [6]. As these methods begin to be deployed in real world settings, a new theory is needed to understand the behavior of these algorithms as they are integrated into safety-critical control loops.