Goto

Collaborating Authors

 Computational Learning Theory


SpaceTime: Causal Discovery from Non-Stationary Time Series

arXiv.org Artificial Intelligence

Understanding causality is challenging and often complicated by changing causal relationships over time and across environments. Climate patterns, for example, shift over time with recurring seasonal trends, while also depending on geographical characteristics such as ecosystem variability. Existing methods for discovering causal graphs from time series either assume stationarity, do not permit both temporal and spatial distribution changes, or are unaware of locations with the same causal relationships. In this work, we therefore unify the three tasks of causal graph discovery in the non-stationary multi-context setting, of reconstructing temporal regimes, and of partitioning datasets and time intervals into those where invariant causal relationships hold. To construct a consistent score that forms the basis of our method, we employ the Minimum Description Length principle. Our resulting algorithm SPACETIME simultaneously accounts for heterogeneity across space and non-stationarity over time. Given multiple time series, it discovers regime changepoints and a temporal causal graph using non-parametric functional modeling and kernelized discrepancy testing. We also show that our method provides insights into real-world phenomena such as river-runoff measured at different catchments and biosphere-atmosphere interactions across ecosystems.


Evaluated CMI Bounds for Meta Learning: Tightness and Expressiveness

Neural Information Processing Systems

Recent work has established that the conditional mutual information (CMI) framework of Steinke and Zakynthinou (2020) is expressive enough to capture generalization guarantees in terms of algorithmic stability, VC dimension, and related complexity measures for conventional learning (Harutyunyan et al., 2021, Haghifam et al., 2021). Hence, it provides a unified method for establishing generalization bounds. In meta learning, there has so far been a divide between information-theoretic results and results from classical learning theory. In this work, we take a first step toward bridging this divide. Specifically, we present novel generalization bounds for meta learning in terms of the evaluated CMI (e-CMI).


Learning Noisy Halfspaces with a Margin: Massart is No Harder than Random

arXiv.org Artificial Intelligence

We study the problem of PAC learning $\gamma$-margin halfspaces with Massart noise. We propose a simple proper learning algorithm, the Perspectron, that has sample complexity $\widetilde{O}((\epsilon\gamma)^{-2})$ and achieves classification error at most $\eta+\epsilon$ where $\eta$ is the Massart noise rate. Prior works [DGT19,CKMY20] came with worse sample complexity guarantees (in both $\epsilon$ and $\gamma$) or could only handle random classification noise [DDK+23,KIT+23] -- a much milder noise assumption. We also show that our results extend to the more challenging setting of learning generalized linear models with a known link function under Massart noise, achieving a similar sample complexity to the halfspace case. This significantly improves upon the prior state-of-the-art in this setting due to [CKMY20], who introduced this model.


Identifying Information from Observations with Uncertainty and Novelty

arXiv.org Machine Learning

A machine learning tasks from observations must encounter and process uncertainty and novelty, especially when it is expected to maintain performance when observing new information and to choose the best fitting hypothesis to the currently observed information. In this context, some key questions arise: what is information, how much information did the observations provide, how much information is required to identify the data-generating process, how many observations remain to get that information, and how does a predictor determine that it has observed novel information? This paper strengthens existing answers to these questions by formalizing the notion of "identifiable information" that arises from the language used to express the relationship between distinct states. Model identifiability and sample complexity are defined via computation of an indicator function over a set of hypotheses. Their properties and asymptotic statistics are described for data-generating processes ranging from deterministic processes to ergodic stationary stochastic processes. This connects the notion of identifying information in finite steps with asymptotic statistics and PAC-learning. The indicator function's computation naturally formalizes novel information and its identification from observations with respect to a hypothesis set. We also proved that computable PAC-Bayes learners' sample complexity distribution is determined by its moments in terms of the the prior probability distribution over a fixed finite hypothesis set.


A Near-optimal Algorithm for Learning Margin Halfspaces with Massart Noise

arXiv.org Machine Learning

We study the problem of PAC learning $\gamma$-margin halfspaces in the presence of Massart noise. Without computational considerations, the sample complexity of this learning problem is known to be $\widetilde{\Theta}(1/(\gamma^2 \epsilon))$. Prior computationally efficient algorithms for the problem incur sample complexity $\tilde{O}(1/(\gamma^4 \epsilon^3))$ and achieve 0-1 error of $\eta+\epsilon$, where $\eta<1/2$ is the upper bound on the noise rate. Recent work gave evidence of an information-computation tradeoff, suggesting that a quadratic dependence on $1/\epsilon$ is required for computationally efficient algorithms. Our main result is a computationally efficient learner with sample complexity $\widetilde{\Theta}(1/(\gamma^2 \epsilon^2))$, nearly matching this lower bound. In addition, our algorithm is simple and practical, relying on online SGD on a carefully selected sequence of convex losses.


Testing Noise Assumptions of Learning Algorithms

arXiv.org Artificial Intelligence

We pose a fundamental question in computational learning theory: can we efficiently test whether a training set satisfies the assumptions of a given noise model? This question has remained unaddressed despite decades of research on learning in the presence of noise. In this work, we show that this task is tractable and present the first efficient algorithm to test various noise assumptions on the training data. To model this question, we extend the recently proposed testable learning framework of Rubinfeld and Vasilyan (2023) and require a learner to run an associated test that satisfies the following two conditions: (1) whenever the test accepts, the learner outputs a classifier along with a certificate of optimality, and (2) the test must pass for any dataset drawn according to a specified modeling assumption on both the marginal distribution and the noise model. We then consider the problem of learning halfspaces over Gaussian marginals with Massart noise (where each label can be flipped with probability less than $1/2$ depending on the input features), and give a fully-polynomial time testable learning algorithm. We also show a separation between the classical setting of learning in the presence of structured noise and testable learning. In fact, for the simple case of random classification noise (where each label is flipped with fixed probability $\eta = 1/2$), we show that testable learning requires super-polynomial time while classical learning is trivial.


PAC Learnability of Scenario Decision-Making Algorithms: Necessary and Sufficient Conditions

arXiv.org Artificial Intelligence

We study the PAC property of scenario decision-making algorithms, that is, the ability to make a decision that has an arbitrarily low risk of violating an unknown safety constraint, provided sufficiently many realizations (called scenarios) of the safety constraint are sampled. Sufficient conditions for scenario decision-making algorithms to be PAC are available in the literature, such as finiteness of the VC dimension of its associated classifier and existence of a compression scheme. We study the question of whether these sufficient conditions are also necessary. We show with counterexamples that this is not the case in general. This contrasts with binary classification learning, for which the analogous conditions are sufficient and necessary. Popular scenario decision-making algorithms, such as scenario optimization, enjoy additional properties, such as stability and consistency. We show that even under these additional assumptions the above conclusions hold. Finally, we derive a necessary condition for scenario decision-making algorithms to be PAC, inspired by the VC dimension and the so-called no-free-lunch theorem.


A Closer Look at the Learnability of Out-of-Distribution (OOD) Detection

arXiv.org Artificial Intelligence

Machine learning algorithms often encounter different or "out-of-distribution" (OOD) data at deployment time, and OOD detection is frequently employed to detect these examples. While it works reasonably well in practice, existing theoretical results on OOD detection are highly pessimistic. In this work, we take a closer look at this problem, and make a distinction between uniform and non-uniform learnability, following PAC learning theory. We characterize under what conditions OOD detection is uniformly and non-uniformly learnable, and we show that in several cases, non-uniform learnability turns a number of negative results into positive. In all cases where OOD detection is learnable, we provide concrete learning algorithms and a sample-complexity analysis.


Non-monotonic Resource Utilization in the Bandits with Knapsacks Problem

Neural Information Processing Systems

Bandits with knapsacks (BwK) is an influential model of sequential decision-making under uncertainty that incorporates resource consumption constraints. In each round, the decision-maker observes an outcome consisting of a reward and a vector of nonnegative resource consumptions, and the budget of each resource is decremented by its consumption. In this paper we introduce a natural generalization of the stochastic BwK problem that allows non-monotonic resource utilization. In each round, the decision-maker observes an outcome consisting of a reward and a vector of resource drifts that can be positive, negative or zero, and the budget of each resource is incremented by its drift. Our main result is a Markov decision process (MDP) policy that has constant regret against a linear programming (LP) relaxation when the decision-maker knows the true outcome distributions.


A Theory of Optimistically Universal Online Learnability for General Concept Classes

arXiv.org Machine Learning

We provide a full characterization of the concept classes that are optimistically universally online learnable with $\{0, 1\}$ labels. The notion of optimistically universal online learning was defined in [Hanneke, 2021] in order to understand learnability under minimal assumptions. In this paper, following the philosophy behind that work, we investigate two questions, namely, for every concept class: (1) What are the minimal assumptions on the data process admitting online learnability? (2) Is there a learning algorithm which succeeds under every data process satisfying the minimal assumptions? Such an algorithm is said to be optimistically universal for the given concept class. We resolve both of these questions for all concept classes, and moreover, as part of our solution, we design general learning algorithms for each case. Finally, we extend these algorithms and results to the agnostic case, showing an equivalence between the minimal assumptions on the data process for learnability in the agnostic and realizable cases, for every concept class, as well as the equivalence of optimistically universal learnability.