Goto

Collaborating Authors

 Computational Learning Theory


Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization

Neural Information Processing Systems

We consider linear prediction with a convex Lipschitz loss, or more generally, stochastic convex optimization problems of generalized linear form, i.e. We show that in this setting, early stopped Gradient Descent (GD), without any explicit regularization or projection, ensures excess error at most \varepsilon (compared to the best possible with unit Euclidean norm) with an optimal, up to logarithmic factors, sample complexity of \tilde{O}(1/\varepsilon 2) and only \tilde{O}(1/\varepsilon 2) iterations. This contrasts with general stochastic convex optimization, where \Omega(1/\varepsilon 4) iterations are needed Amir et al. 2021. The lower iteration complexity is ensured by leveraging uniform convergence rather than stability. But instead of uniform convergence in a norm ball, which we show can guarantee suboptimal learning using \Theta(1/\varepsilon 4) samples, we rely on uniform convergence in a distribution-dependent ball.


Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons

Neural Information Processing Systems

The response time of physical computational elements is finite, and neurons are no exception. In hierarchical models of cortical networks each layer thus introduces a response lag. This inherent property of physical dynamical systems results in delayed processing of stimuli and causes a timing mismatch between network output and instructive signals, thus afflicting not only inference, but also learning. We introduce Latent Equilibrium, a new framework for inference and learning in networks of slow components which avoids these issues by harnessing the ability of biological neurons to phase-advance their output with respect to their membrane potential. This principle enables quasi-instantaneous inference independent of network depth and avoids the need for phased plasticity or computationally expensive network relaxation phases.


A Combinatorial Perspective on the Optimization of Shallow ReLU Networks

Neural Information Processing Systems

The NP-hard problem of optimizing a shallow ReLU network can be characterized as a combinatorial search over each training example's activation pattern followed by a constrained convex problem given a fixed set of activation patterns. We explore the implications of this combinatorial aspect of ReLU optimization in this work. We show that it can be naturally modeled via a geometric and combinatoric object known as a zonotope with its vertex set isomorphic to the set of feasible activation patterns. This assists in analysis and provides a foundation for further research. We demonstrate its usefulness when we explore the sensitivity of the optimal loss to perturbations of the training data.


SpaceTime: Causal Discovery from Non-Stationary Time Series

arXiv.org Artificial Intelligence

Understanding causality is challenging and often complicated by changing causal relationships over time and across environments. Climate patterns, for example, shift over time with recurring seasonal trends, while also depending on geographical characteristics such as ecosystem variability. Existing methods for discovering causal graphs from time series either assume stationarity, do not permit both temporal and spatial distribution changes, or are unaware of locations with the same causal relationships. In this work, we therefore unify the three tasks of causal graph discovery in the non-stationary multi-context setting, of reconstructing temporal regimes, and of partitioning datasets and time intervals into those where invariant causal relationships hold. To construct a consistent score that forms the basis of our method, we employ the Minimum Description Length principle. Our resulting algorithm SPACETIME simultaneously accounts for heterogeneity across space and non-stationarity over time. Given multiple time series, it discovers regime changepoints and a temporal causal graph using non-parametric functional modeling and kernelized discrepancy testing. We also show that our method provides insights into real-world phenomena such as river-runoff measured at different catchments and biosphere-atmosphere interactions across ecosystems.


Evaluated CMI Bounds for Meta Learning: Tightness and Expressiveness

Neural Information Processing Systems

Recent work has established that the conditional mutual information (CMI) framework of Steinke and Zakynthinou (2020) is expressive enough to capture generalization guarantees in terms of algorithmic stability, VC dimension, and related complexity measures for conventional learning (Harutyunyan et al., 2021, Haghifam et al., 2021). Hence, it provides a unified method for establishing generalization bounds. In meta learning, there has so far been a divide between information-theoretic results and results from classical learning theory. In this work, we take a first step toward bridging this divide. Specifically, we present novel generalization bounds for meta learning in terms of the evaluated CMI (e-CMI).


Learning Noisy Halfspaces with a Margin: Massart is No Harder than Random

arXiv.org Artificial Intelligence

We study the problem of PAC learning $\gamma$-margin halfspaces with Massart noise. We propose a simple proper learning algorithm, the Perspectron, that has sample complexity $\widetilde{O}((\epsilon\gamma)^{-2})$ and achieves classification error at most $\eta+\epsilon$ where $\eta$ is the Massart noise rate. Prior works [DGT19,CKMY20] came with worse sample complexity guarantees (in both $\epsilon$ and $\gamma$) or could only handle random classification noise [DDK+23,KIT+23] -- a much milder noise assumption. We also show that our results extend to the more challenging setting of learning generalized linear models with a known link function under Massart noise, achieving a similar sample complexity to the halfspace case. This significantly improves upon the prior state-of-the-art in this setting due to [CKMY20], who introduced this model.


Identifying Information from Observations with Uncertainty and Novelty

arXiv.org Machine Learning

A machine learning tasks from observations must encounter and process uncertainty and novelty, especially when it is expected to maintain performance when observing new information and to choose the best fitting hypothesis to the currently observed information. In this context, some key questions arise: what is information, how much information did the observations provide, how much information is required to identify the data-generating process, how many observations remain to get that information, and how does a predictor determine that it has observed novel information? This paper strengthens existing answers to these questions by formalizing the notion of "identifiable information" that arises from the language used to express the relationship between distinct states. Model identifiability and sample complexity are defined via computation of an indicator function over a set of hypotheses. Their properties and asymptotic statistics are described for data-generating processes ranging from deterministic processes to ergodic stationary stochastic processes. This connects the notion of identifying information in finite steps with asymptotic statistics and PAC-learning. The indicator function's computation naturally formalizes novel information and its identification from observations with respect to a hypothesis set. We also proved that computable PAC-Bayes learners' sample complexity distribution is determined by its moments in terms of the the prior probability distribution over a fixed finite hypothesis set.


A Near-optimal Algorithm for Learning Margin Halfspaces with Massart Noise

arXiv.org Machine Learning

We study the problem of PAC learning $\gamma$-margin halfspaces in the presence of Massart noise. Without computational considerations, the sample complexity of this learning problem is known to be $\widetilde{\Theta}(1/(\gamma^2 \epsilon))$. Prior computationally efficient algorithms for the problem incur sample complexity $\tilde{O}(1/(\gamma^4 \epsilon^3))$ and achieve 0-1 error of $\eta+\epsilon$, where $\eta<1/2$ is the upper bound on the noise rate. Recent work gave evidence of an information-computation tradeoff, suggesting that a quadratic dependence on $1/\epsilon$ is required for computationally efficient algorithms. Our main result is a computationally efficient learner with sample complexity $\widetilde{\Theta}(1/(\gamma^2 \epsilon^2))$, nearly matching this lower bound. In addition, our algorithm is simple and practical, relying on online SGD on a carefully selected sequence of convex losses.


A Closer Look at the Learnability of Out-of-Distribution (OOD) Detection

arXiv.org Artificial Intelligence

Machine learning algorithms often encounter different or "out-of-distribution" (OOD) data at deployment time, and OOD detection is frequently employed to detect these examples. While it works reasonably well in practice, existing theoretical results on OOD detection are highly pessimistic. In this work, we take a closer look at this problem, and make a distinction between uniform and non-uniform learnability, following PAC learning theory. We characterize under what conditions OOD detection is uniformly and non-uniformly learnable, and we show that in several cases, non-uniform learnability turns a number of negative results into positive. In all cases where OOD detection is learnable, we provide concrete learning algorithms and a sample-complexity analysis.


Testing Noise Assumptions of Learning Algorithms

arXiv.org Artificial Intelligence

We pose a fundamental question in computational learning theory: can we efficiently test whether a training set satisfies the assumptions of a given noise model? This question has remained unaddressed despite decades of research on learning in the presence of noise. In this work, we show that this task is tractable and present the first efficient algorithm to test various noise assumptions on the training data. To model this question, we extend the recently proposed testable learning framework of Rubinfeld and Vasilyan (2023) and require a learner to run an associated test that satisfies the following two conditions: (1) whenever the test accepts, the learner outputs a classifier along with a certificate of optimality, and (2) the test must pass for any dataset drawn according to a specified modeling assumption on both the marginal distribution and the noise model. We then consider the problem of learning halfspaces over Gaussian marginals with Massart noise (where each label can be flipped with probability less than $1/2$ depending on the input features), and give a fully-polynomial time testable learning algorithm. We also show a separation between the classical setting of learning in the presence of structured noise and testable learning. In fact, for the simple case of random classification noise (where each label is flipped with fixed probability $\eta = 1/2$), we show that testable learning requires super-polynomial time while classical learning is trivial.