Computational Learning Theory
Discrete MDL Predicts in Total Variation
The Minimum Description Length (MDL) principle selects the model that has the shortest code for data plus model. We show that for a countable class of models, MDL predictions are close to the true distribution in a strong sense. The result is completely general. No independence, ergodicity, stationarity, identifiability, or other assumption on the model class need to be made. More formally, we show that for any countable class of models, the distributions selected by MDL (or MAP) asymptotically predict (merge with) the true measure in the class in total variation distance.
Potential-Based Agnostic Boosting
We prove strong noise-tolerance properties of a potential-based boosting algorithm, similar to MadaBoost (Domingo and Watanabe, 2000) and SmoothBoost (Servedio, 2003). Our analysis is in the agnostic framework of Kearns, Schapire and Sellie (1994), giving polynomial-time guarantees in presence of arbitrary noise. A remarkable feature of our algorithm is that it can be implemented without reweighting examples, by randomly relabeling them instead. Our boosting theorem gives, as easy corollaries, alternative derivations of two recent non-trivial results in computational learning theory: agnostically learning decision trees (Gopalan et al, 2008) and agnostically learning halfspaces (Kalai et al, 2005). Experiments suggest that the algorithm performs similarly to Madaboost.
Human Rademacher Complexity
Zhu, Jerry, Gibson, Bryan R., Rogers, Timothy T.
We propose to use Rademacher complexity, originally developed in computational learning theory, as a measure of human learning capacity. Rademacher complexity measures a learners ability to fit random data, and can be used to bound the learners true error based on the observed training sample error. We first review the definition of Rademacher complexity and its generalization bound. We then describe a learning the noise" procedure to experimentally measure human Rademacher complexities. The results from empirical studies showed that: (i) human Rademacher complexity can be successfully measured, (ii) the complexity depends on the domain and training sample size in intuitive ways, (iii) human learning respects the generalization bounds, (iv) the bounds can be useful in predicting the danger of overfitting in human learning. Finally, we discuss the potential applications of human Rademacher complexity in cognitive science."
Industrial-Strength Formally Certified SAT Solving
Darbari, Ashish, Fischer, Bernd, Marques-Silva, Joao
Boolean Satisfiability (SAT) solvers are now routinely used in the verification of large industrial problems. However, their application in safety-critical domains such as the railways, avionics, and automotive industries requires some form of assurance for the results, as the solvers can (and sometimes do) have bugs. Unfortunately, the complexity of modern, highly optimized SAT solvers renders impractical the development of direct formal proofs of their correctness. This paper presents an alternative approach where an untrusted, industrial-strength, SAT solver is plugged into a trusted, formally certified, SAT proof checker to provide industrial-strength certified SAT solving. The key novelties and characteristics of our approach are (i) that the checker is automatically extracted from the formal development, (ii), that the combined system can be used as a standalone executable program independent of any supporting theorem prover, and (iii) that the checker certifies any SAT solver respecting the agreed format for satisfiability and unsatisfiability claims. The core of the system is a certified checker for unsatisfiability claims that is formally designed and verified in Coq. We present its formal design and outline the correctness proofs. The actual standalone checker is automatically extracted from the the Coq development. An evaluation of the certified checker on a representative set of industrial benchmarks from the SAT Race Competition shows that, albeit it is slower than uncertified SAT checkers, it is significantly faster than certified checkers implemented on top of an interactive theorem prover.
A Geometric Approach to Sample Compression
Rubinstein, Benjamin I. P., Rubinstein, J. Hyam
The Sample Compression Conjecture of Littlestone & Warmuth has remained unsolved for over two decades. This paper presents a systematic geometric investigation of the compression of finite maximum concept classes. Simple arrangements of hyperplanes in Hyperbolic space, and Piecewise-Linear hyperplane arrangements, are shown to represent maximum classes, generalizing the corresponding Euclidean result. A main result is that PL arrangements can be swept by a moving hyperplane to unlabeled d-compress any finite maximum class, forming a peeling scheme as conjectured by Kuzmin & Warmuth. A corollary is that some d-maximal classes cannot be embedded into any maximum class of VC dimension d+k, for any constant k. The construction of the PL sweeping involves Pachner moves on the one-inclusion graph, corresponding to moves of a hyperplane across the intersection of d other hyperplanes. This extends the well known Pachner moves for triangulations to cubical complexes.
Sparsification and feature selection by compressive linear regression
The Minimum Description Length (MDL) principle states that the optimal model for a given data set is that which compresses it best. Due to practial limitations the model can be restricted to a class such as linear regression models, which we address in this study. As in other formulations such as the LASSO and forward step-wise regression we are interested in sparsifying the feature set while preserving generalization ability. We derive a well-principled set of codes for both parameters and error residuals along with smooth approximations to lengths of these codes as to allow gradient descent optimization of description length, and go on to show that sparsification and feature selection using our approach is faster than the LASSO on several datasets from the UCI and StatLib repositories, with favorable generalization accuracy, while being fully automatic, requiring neither cross-validation nor tuning of regularization hyper-parameters, allowing even for a nonlinear expansion of the feature set followed by sparsification.
Integrating Conflict Driven Clause Learning to Local Search
Audenard, Gilles, Lagniez, Jean-Marie, Mazure, Bertrand, Saรฏs, Lakhdar
This article introduces SatHyS (SAT HYbrid Solver), a novel hybrid approach for propositional satisfiability. It combines local search and conflict driven clause learning (CDCL) scheme. Each time the local search part reaches a local minimum, the CDCL is launched. For SAT problems it behaves like a tabu list, whereas for UNSAT ones, the CDCL part tries to focus on minimum unsatisfiable sub-formula (MUS). Experimental results show good performances on many classes of SAT instances from the last SAT competitions.
Discrete MDL Predicts in Total Variation
The Minimum Description Length (MDL) principle selects the model that has the shortest code for data plus model. We show that for a countable class of models, MDL predictions are close to the true distribution in a strong sense. The result is completely general. No independence, ergodicity, stationarity, identifiability, or other assumption on the model class need to be made. More formally, we show that for any countable class of models, the distributions selected by MDL (or MAP) asymptotically predict (merge with) the true measure in the class in total variation distance. Implications for non-i.i.d. domains like time-series forecasting, discriminative learning, and reinforcement learning are discussed.
Statistical ranking and combinatorial Hodge theory
Jiang, Xiaoye, Lim, Lek-Heng, Yao, Yuan, Ye, Yinyu
We propose a number of techniques for obtaining a global ranking from data that may be incomplete and imbalanced -- characteristics almost universal to modern datasets coming from e-commerce and internet applications. We are primarily interested in score or rating-based cardinal data. From raw ranking data, we construct pairwise rankings, represented as edge flows on an appropriate graph. Our statistical ranking method uses the graph Helmholtzian, the graph theoretic analogue of the Helmholtz operator or vector Laplacian, in much the same way the graph Laplacian is an analogue of the Laplace operator or scalar Laplacian. We study the graph Helmholtzian using combinatorial Hodge theory: we show that every edge flow representing pairwise ranking can be resolved into two orthogonal components, a gradient flow that represents the L2-optimal global ranking and a divergence-free flow (cyclic) that measures the validity of the global ranking obtained -- if this is large, then the data does not have a meaningful global ranking. This divergence-free flow can be further decomposed orthogonally into a curl flow (locally cyclic) and a harmonic flow (locally acyclic but globally cyclic); these provides information on whether inconsistency arises locally or globally. An obvious advantage over the NP-hard Kemeny optimization is that discrete Hodge decomposition may be computed via a linear least squares regression. We also investigated the L1-projection of edge flows, showing that this is dual to correlation maximization over bounded divergence-free flows, and the L1-approximate sparse cyclic ranking, showing that this is dual to correlation maximization over bounded curl-free flows. We discuss relations with Kemeny optimization, Borda count, and Kendall-Smith consistency index from social choice theory and statistics.
Restart Strategy Selection using Machine Learning Techniques
Restart strategies are an important factor in the performance of conflict-driven Davis Putnam style SAT solvers. Selecting a good restart strategy for a problem instance can enhance the performance of a solver. Inspired by recent success applying machine learning techniques to predict the runtime of SAT solvers, we present a method which uses machine learning to boost solver performance through a smart selection of the restart strategy. Based on easy to compute features, we train both a satisfiability classifier and runtime models. We use these models to choose between restart strategies. We present experimental results comparing this technique with the most commonly used restart strategies. Our results demonstrate that machine learning is effective in improving solver performance.