Computational Learning Theory
Active Learning with a Drifting Distribution
We study the problem of active learning in a stream-based setting, allowing the distribution of the examples to change over time. We prove upper bounds on the number of prediction mistakes and number of label requests for established disagreement-based active learning algorithms, both in the realizable case and under Tsybakov noise. We further prove minimax lower bounds for this problem.
PAC-Bayesian Analysis of Contextual Bandits
Seldin, Yevgeny, Auer, Peter, Shawe-taylor, John S., Ortner, Ronald, Laviolette, François
We derive an instantaneous (per-round) data-dependent regret bound for stochastic multiarmed bandits with side information (also known as contextual bandits). The scaling of our regret bound with the number of states (contexts) $N$ goes as $\sqrt{N I_{\rho_t}(S;A)}$, where $I_{\rho_t}(S;A)$ is the mutual information between states and actions (the side information) used by the algorithm at round $t$. If the algorithm uses all the side information, the regret bound scales as $\sqrt{N \ln K}$, where $K$ is the number of actions (arms). However, if the side information $I_{\rho_t}(S;A)$ is not fully used, the regret bound is significantly tighter. In the extreme case, when $I_{\rho_t}(S;A) = 0$, the dependence on the number of states reduces from linear to logarithmic. Our analysis allows to provide the algorithm large amount of side information, let the algorithm to decide which side information is relevant for the task, and penalize the algorithm only for the side information that it is using de facto. We also present an algorithm for multiarmed bandits with side information with computational complexity that is a linear in the number of actions.
Algorithms and hardness results for parallel large margin learning
We study the fundamental problem of learning an unknown large-margin halfspace in the context of parallel computation. Our main positive result is a parallel algorithm for learning a large-margin halfspace that is based on interior point methods from convex optimization and fast parallel algorithms for matrix computations. We show that this algorithm learns an unknown gamma-margin halfspace over n dimensions using poly(n,1/gamma) processors and runs in time ~O(1/gamma) + O(log n). In contrast, naive parallel algorithms that learn a gamma-margin halfspace in time that depends polylogarithmically on n have Omega(1/gamma^2) runtime dependence on gamma. Our main negative result deals with boosting, which is a standard approach to learning large-margin halfspaces. We give an information-theoretic proof that in the original PAC framework, in which a weak learning algorithm is provided as an oracle that is called by the booster, boosting cannot be parallelized: the ability to call the weak learner multiple times in parallel within a single boosting stage does not reduce the overall number of successive stages of boosting that are required.
Information, learning and falsification
There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled out. The third, statistical learning theory, has introduced measures of capacity that control (in part) the expected risk of classifiers. These capacities quantify the expectations regarding future data that learning algorithms embed into classifiers. This note describes a new method of quantifying information, effective information, that links algorithmic information to Shannon information, and also links both to capacities arising in statistical learning theory. After introducing the measure, we show that it provides a non-universal analog of Kolmogorov complexity. We then apply it to derive basic capacities in statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. A nice byproduct of our approach is an interpretation of the explanatory power of a learning algorithm in terms of the number of hypotheses it falsifies, counted in two different ways for the two capacities. We also discuss how effective information relates to information gain, Shannon and mutual information.
Falsification and future performance
We information-theoretically reformulate two measures of capacity from statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. We show these capacity measures count the number of hypotheses about a dataset that a learning algorithm falsifies when it finds the classifier in its repertoire minimizing empirical risk. It then follows from that the future performance of predictors on unseen data is controlled in part by how many hypotheses the learner falsifies. As a corollary we show that empirical VC-entropy quantifies the message length of the true hypothesis in the optimal code of a particular probability distribution, the so-called actual repertoire.
Estimated VC dimension for risk bounds
McDonald, Daniel J., Shalizi, Cosma Rohilla, Schervish, Mark
Vapnik-Chervonenkis (VC) dimension is a fundamental measure of the generalization capacity of learning algorithms. However, apart from a few special cases, it is hard or impossible to calculate analytically. Vapnik et al. [10] proposed a technique for estimating the VC dimension empirically. While their approach behaves well in simulations, it could not be used to bound the generalization risk of classifiers, because there were no bounds for the estimation error of the VC dimension itself. We rectify this omission, providing high probability concentration results for the proposed estimator and deriving corresponding generalization bounds.
An MDL framework for sparse coding and dictionary learning
Ramírez, Ignacio, Sapiro, Guillermo
The power of sparse signal modeling with learned over-complete dictionaries has been demonstrated in a variety of applications and fields, from signal processing to statistical inference and machine learning. However, the statistical properties of these models, such as under-fitting or over-fitting given sets of data, are still not well characterized in the literature. As a result, the success of sparse modeling depends on hand-tuning critical parameters for each data and application. This work aims at addressing this by providing a practical and objective characterization of sparse models by means of the Minimum Description Length (MDL) principle -- a well established information-theoretic approach to model selection in statistical inference. The resulting framework derives a family of efficient sparse coding and dictionary learning algorithms which, by virtue of the MDL principle, are completely parameter free. Furthermore, such framework allows to incorporate additional prior information to existing models, such as Markovian dependencies, or to define completely new problem formulations, including in the matrix analysis area, in a natural way. These virtues will be demonstrated with parameter-free algorithms for the classic image denoising and classification problems, and for low-rank matrix recovery in video applications.
Low-rank data modeling via the Minimum Description Length principle
Ramírez, Ignacio, Sapiro, Guillermo
Robust low-rank matrix estimation is a topic of increasing interest, with promising applications in a variety of fields, from computer vision to data mining and recommender systems. Recent theoretical results establish the ability of such data models to recover the true underlying low-rank matrix when a large portion of the measured matrix is either missing or arbitrarily corrupted. However, if low rank is not a hypothesis about the true nature of the data, but a device for extracting regularity from it, no current guidelines exist for choosing the rank of the estimated matrix. In this work we address this problem by means of the Minimum Description Length (MDL) principle -- a well established information-theoretic approach to statistical inference -- as a guideline for selecting a model for the data at hand. We demonstrate the practical usefulness of our formal approach with results for complex background extraction in video sequences.
VC dimension of ellipsoids
We will establish that the VC dimension of the class of d-dimensional ellipsoids is (d^2+3d)/2, and that maximum likelihood estimate with N-component d-dimensional Gaussian mixture models induces a geometric class having VC dimension at least N(d^2+3d)/2. Keywords: VC dimension; finite dimensional ellipsoid; Gaussian mixture model