Computational Learning Theory

Regularity Normalization: Constraining Implicit Space with Minimum Description Length Machine Learning

Inspired by the adaptation phenomenon of biological neuronal firing, we propose regularity normalization: a reparameterization of the activation in the neural network that take into account the statistical regularity in the implicit space. By considering the neural network optimization process as a model selection problem, the implicit space is constrained by the normalizing factor, the minimum description length of the optimal universal code. We introduce an incremental version of computing this universal code as normalized maximum likelihood and demonstrated its flexibility to include data prior such as top-down attention and other oracle information and its compatibility to be incorporated into batch normalization and layer normalization. The preliminary results showed that the proposed method outperforms existing normalization methods in tackling the limited and imbalanced data from a non-stationary distribution benchmarked on computer vision tasks. As an unsupervised attention mechanism given input data, this biologically plausible normalization has the potential to deal with other complicated real-world scenarios as well as reinforcement learning setting where the rewards are sparse and non-uniform. Further research is proposed to discover these scenarios and explore the behaviors among different variants.

Characterization of Glue Variables in CDCL SAT Solving Artificial Intelligence

A state-of-the-art criterion to evaluate the importance of a given learned clause is called Literal Block Distance (LBD) score. It measures the number of distinct decision levels in a given learned clause. The lower the LBD score of a learned clause, the better is its quality. The learned clauses with LBD score of 2, called glue clauses, are known to possess high pruning power which are never deleted from the clause databases of the modern CDCL SAT solvers. In this work, we relate glue clauses to decision variables. We call the variables that appeared in at least one glue clause up to the current search state glue variables. We first show experimentally, by running the state-of-the-art CDCL SAT solver MapleL-CMDist on benchmarks from SAT Competition-2017 and 2018, that branching decisions with glue variables are categorically more inference and conflict efficient than nonglue variables. Based on this observation, we develop a structure aware CDCL variable bumping scheme, which bumps the activity score of a glue variable based on its appearance count in the glue clauses that are learned so far by the search. Empirical evaluation shows effectiveness of the new method over the main track instances from SAT Competition 2017 and 2018.

Bounds in Query Learning Machine Learning

ABSTRACT.We introduce new combinatorial quantities for concept classes, and prove lower and upper bounds for learning complexity in several models of query learning in terms of various combinatorial quantities. Our approach is flexible and powerful enough to enough to give new and very short proofs of the efficient learnability of several prominent examples (e.g. In the setting of equivalence plus membership queries, we give an algorithm which learns a class in polynomially many queries whenever any such algorithm exists. We also study equivalence query learning in a randomized model, producing new bounds on the expected number of queries required to learn an arbitrary concept. Many of the techniques and notions of dimension draw inspiration from or are related to notions from model theory, and these connections are explained. We also use techniques from query learning to mildly improve a result of Laskowski regarding compression schemes. A concept class C on X is a subset of P(X).In C by means of a series of data requests called equivalence queries.

On the Convergence Proof of AMSGrad and a New Version Machine Learning

The adaptive moment estimation algorithm Adam (Kingma and Ba) is a popular optimizer in the training of deep neural networks. However, Reddi et al. have recently shown that the convergence proof of Adam is problematic and proposed a variant of Adam called AMSGrad as a fix. In this paper, we show that the convergence proof of AMSGrad is also problematic. Concretely, the problem in the convergence proof of AMSGrad is in handling the hyper-parameters, treating them as equal while they are not. This is also the neglected issue in the convergence proof of Adam. We provide an explicit counter-example of a simple convex optimization setting to show this neglected issue. Depending on manipulating the hyper-parameters, we present various fixes for this issue. We provide a new convergence proof for AMSGrad as the first fix. We also propose a new version of AMSGrad called AdamX as another fix. Our experiments on the benchmark dataset also support our theoretical results.

Computational Learning Theory


Theoretical results in machine learning mainly deal with a type of inductive learning called supervised learning. In supervised learning, an algorithm is given samples that are labeled in some useful way. For example, the samples might be descriptions of mushrooms, and the labels could be whether or not the mushrooms are edible. The algorithm takes these previously labeled samples and uses them to induce a classifier. This classifier is a function that assigns labels to samples including the samples that have never been previously seen by the algorithm.

Optimal Collusion-Free Teaching Machine Learning

Formal models of learning from teachers need to respect certain criteria to avoid collusion. The most commonly accepted notion of collusion-freeness was proposed by Goldman and Mathias (1996), and various teaching models obeying their criterion have been studied. For each model $M$ and each concept class $\mathcal{C}$, a parameter $M$-$\mathrm{TD}(\mathcal{C})$ refers to the teaching dimension of concept class $\mathcal{C}$ in model $M$---defined to be the number of examples required for teaching a concept, in the worst case over all concepts in $\mathcal{C}$. This paper introduces a new model of teaching, called no-clash teaching, together with the corresponding parameter $\mathrm{NCTD}(\mathcal{C})$. No-clash teaching is provably optimal in the strong sense that, given any concept class $\mathcal{C}$ and any model $M$ obeying Goldman and Mathias's collusion-freeness criterion, one obtains $\mathrm{NCTD}(\mathcal{C})\le M$-$\mathrm{TD}(\mathcal{C})$. We also study a corresponding notion $\mathrm{NCTD}^+$ for the case of learning from positive data only, establish useful bounds on $\mathrm{NCTD}$ and $\mathrm{NCTD}^+$, and discuss relations of these parameters to the VC-dimension and to sample compression. In addition to formulating an optimal model of collusion-free teaching, our main results are on the computational complexity of deciding whether $\mathrm{NCTD}^+(\mathcal{C})=k$ (or $\mathrm{NCTD}(\mathcal{C})=k$) for given $\mathcal{C}$ and $k$. We show some such decision problems to be equivalent to the existence question for certain constrained matchings in bipartite graphs. Our NP-hardness results for the latter are of independent interest in the study of constrained graph matchings.

Private Center Points and Learning of Halfspaces Artificial Intelligence

We present a private learner for halfspaces over an arbitrary finite domain $X\subset \mathbb{R}^d$ with sample complexity $mathrm{poly}(d,2^{\log^*|X|})$. The building block for this learner is a differentially private algorithm for locating an approximate center point of $m>\mathrm{poly}(d,2^{\log^*|X|})$ points -- a high dimensional generalization of the median function. Our construction establishes a relationship between these two problems that is reminiscent of the relation between the median and learning one-dimensional thresholds [Bun et al.\ FOCS '15]. This relationship suggests that the problem of privately locating a center point may have further applications in the design of differentially private algorithms. We also provide a lower bound on the sample complexity for privately finding a point in the convex hull. For approximate differential privacy, we show a lower bound of $m=\Omega(d+\log^*|X|)$, whereas for pure differential privacy $m=\Omega(d\log|X|)$.

Community-based 3-SAT Formulas with a Predefined Solution Artificial Intelligence

It is crucial to generate crafted SAT formulas with predefined solutions for the testing and development of SAT solvers since many SAT formulas from real-world applications have solutions. Although some generating algorithms have been proposed to generate SAT formulas with predefined solutions, community structures of SAT formulas are not considered. We propose a 3-SAT formula generating algorithm that not only guarantees the existence of a predefined solution, but also simultaneously considers community structures and clause distributions. The proposed 3-SAT formula generating algorithm controls the quality of community structures through controlling (1) the number of clauses whose variables have a common community, which we call intra-community clauses, and (2) the number of variables that only belong to one community, which we call intra-community variables. To study the combined effect of community structures and clause distributions on the hardness of SAT formulas, we measure solving runtimes of two solvers, gluHack (a leading CDCL solver) and CPSparrow (a leading SLS solver), on the generated SAT formulas under different groups of parameter settings. Through extensive experiments, we obtain some noteworthy observations on the SAT formulas generated by the proposed algorithm: (1) The community structure has little or no effects on the hardness of SAT formulas with regard to CPSparrow but a strong effect with regard to gluHack. (2) Only when the proportion of true literals in a SAT formula in terms of the predefined solution is 0.5, SAT formulas are hard-to-solve with regard to gluHack; when this proportion is below 0.5, SAT formulas are hard-to-solve with regard to CPSparrow. (3) When the ratio of the number of clauses to that of variables is around 4.25, the SAT formulas are hard-to-solve with regard to both gluHack and CPSparrow.

Differentially Private Learning of Geometric Concepts Machine Learning

Machine learning algorithms have exciting and wide-range potential. However, as the data frequently containsensitive personal information, there are real privacy concerns associated with the development and the deployment of this technology. Motivated by this observation, the line of work on differentially private learning (initiated by [23]) aims to construct learning algorithms that provide strong (mathematically proven) privacy protections for the training data. Both government agenciesand industrial companies have realized the importance of introducing strong privacy protection to statistical and machine learning tasks. A few recent examples include Google [20] and Apple [27] that are already using differentially private estimation algorithms that feed into machine learning algorithms, and the US Census Bureau announcement that they will use differentially privatedata publication techniques in the next decennial census [1]. Differential privacy is increasingly accepted as a standard for rigorous privacy. We refer the reader to the excellent surveys in [17] and [28]. The definition of differential privacy is, Definition 1.1 ([16]). Let A be a randomized algorithm whose input is a sample.

Crowdsourced PAC Learning under Classification Noise Machine Learning

In this paper, we analyze PAC learnability from labels produced by crowdsourcing. In our setting, unlabeled examples are drawn from a distribution and labels are crowdsourced from workers who operate under classification noise, each with their own noise parameter. We develop an end-to-end crowdsourced PAC learning algorithm that takes unlabeled data points as input and outputs a trained classifier. Our three-step algorithm incorporates majority voting, pure-exploration bandits, and noisy-PAC learning. We prove several guarantees on the number of tasks labeled by workers for PAC learning in this setting and show that our algorithm improves upon the baseline by reducing the total number of tasks given to workers. We demonstrate the robustness of our algorithm by exploring its application to additional realistic crowdsourcing settings.