Goto

Collaborating Authors

 Association Learning


Investigating the Privacy Risk of Using Robot Vacuum Cleaners in Smart Environments

arXiv.org Artificial Intelligence

Robot vacuum cleaners have become increasingly popular and are widely used in various smart environments. To improve user convenience, manufacturers also introduced smartphone applications that enable users to customize cleaning settings or access information about their robot vacuum cleaners. While this integration enhances the interaction between users and their robot vacuum cleaners, it results in potential privacy concerns because users' personal information may be exposed. To address these concerns, end-to-end encryption is implemented between the application, cloud service, and robot vacuum cleaners to secure the exchanged information. Nevertheless, network header metadata remains unencrypted and it is still vulnerable to network eavesdropping. In this paper, we investigate the potential risk of private information exposure through such metadata. A popular robot vacuum cleaner was deployed in a real smart environment where passive network eavesdropping was conducted during several selected cleaning events. Our extensive analysis, based on Association Rule Learning, demonstrates that it is feasible to identify certain events using only the captured Internet traffic metadata, thereby potentially exposing private user information and raising privacy concerns.


SDRDPy: An application to graphically visualize the knowledge obtained with supervised descriptive rule algorithms

arXiv.org Artificial Intelligence

SDRDPy is a desktop application that allows experts an intuitive graphic and tabular representation of the knowledge extracted by any supervised descriptive rule discovery algorithm. The application is able to provide an analysis of the data showing the relevant information of the data set and the relationship between the rules, data and the quality measures associated for each rule regardless of the tool where algorithm has been executed. All of the information is presented in a user-friendly application in order to facilitate expert analysis and also the exportation of reports in different formats. Data Science involves several phases [2]: 1. In this phase, all the information from different sources from which knowledge is to be obtained is collected. In this phase, the data collected in the previous step goes through a filtering process where the variables to be studied are selected, and incomplete or erroneous data are eliminated and transformed so that the Data Science technique can process this information.


A Voting Approach for Explainable Classification with Rule Learning

arXiv.org Artificial Intelligence

State-of-the-art results in typical classification tasks are mostly achieved by unexplainable machine learning methods, like deep neural networks, for instance. Contrarily, in this paper, we investigate the application of rule learning methods in such a context. Thus, classifications become based on comprehensible (first-order) rules, explaining the predictions made. In general, however, rule-based classifications are less accurate than state-of-the-art results (often significantly). As main contribution, we introduce a voting approach combining both worlds, aiming to achieve comparable results as (unexplainable) state-of-the-art methods, while still providing explanations in the form of deterministic rules. Considering a variety of benchmark data sets including a use case of significant interest to insurance industries, we prove that our approach not only clearly outperforms ordinary rule learning methods, but also yields results on a par with state-of-the-art outcomes.


Rule Learning as Machine Translation using the Atomic Knowledge Bank

arXiv.org Artificial Intelligence

Machine learning models, and in particular language models, are being applied to various tasks that require reasoning. While such models are good at capturing patterns their ability to reason in a trustable and controlled manner is frequently questioned. On the other hand, logic-based rule systems allow for controlled inspection and already established verification methods. However it is well-known that creating such systems manually is time-consuming and prone to errors. We explore the capability of transformers to translate sentences expressing rules in natural language into logical rules. We see reasoners as the most reliable tools for performing logical reasoning and focus on translating language into the format expected by such tools. We perform experiments using the DKET dataset from the literature and create a dataset for language to logic translation based on the Atomic knowledge bank.


Semantic Association Rule Learning from Time Series Data and Knowledge Graphs

arXiv.org Artificial Intelligence

Digital Twins (DT) are a promising concept in cyber-physical systems research due to their advanced features including monitoring and automated reasoning. Semantic technologies such as Knowledge Graphs (KG) are recently being utilized in DTs especially for information modelling. Building on this move, this paper proposes a pipeline for semantic association rule learning in DTs using KGs and time series data. In addition to this initial pipeline, we also propose new semantic association rule criterion. The approach is evaluated on an industrial water network scenario. Initial evaluation shows that the proposed approach is able to learn a high number of association rules with semantic information which are more generalizable. The paper aims to set a foundation for further work on using semantic association rule learning especially in the context of industrial applications.


Causal Rule Learning: Enhancing the Understanding of Heterogeneous Treatment Effect via Weighted Causal Rules

arXiv.org Machine Learning

Interpretability is a key concern in estimating heterogeneous treatment effects using machine learning methods, especially for healthcare applications where high-stake decisions are often made. Inspired by the Predictive, Descriptive, Relevant framework of interpretability, we propose causal rule learning which finds a refined set of causal rules characterizing potential subgroups to estimate and enhance our understanding of heterogeneous treatment effects. Causal rule learning involves three phases: rule discovery, rule selection, and rule analysis. In the rule discovery phase, we utilize a causal forest to generate a pool of causal rules with corresponding subgroup average treatment effects. The selection phase then employs a D-learning method to select a subset of these rules to deconstruct individual-level treatment effects as a linear combination of the subgroup-level effects. This helps to answer an ignored question by previous literature: what if an individual simultaneously belongs to multiple groups with different average treatment effects? The rule analysis phase outlines a detailed procedure to further analyze each rule in the subset from multiple perspectives, revealing the most promising rules for further validation. The rules themselves, their corresponding subgroup treatment effects, and their weights in the linear combination give us more insights into heterogeneous treatment effects. Simulation and real-world data analysis demonstrate the superior performance of causal rule learning on the interpretable estimation of heterogeneous treatment effect when the ground truth is complex and the sample size is sufficient.


Logical Entity Representation in Knowledge-Graphs for Differentiable Rule Learning

arXiv.org Artificial Intelligence

Probabilistic logical rule learning has shown great strength in logical rule mining and knowledge graph completion. It learns logical rules to predict missing edges by reasoning on existing edges in the knowledge graph. However, previous efforts have largely been limited to only modeling chain-like Horn clauses such as $R_1(x,z)\land R_2(z,y)\Rightarrow H(x,y)$. This formulation overlooks additional contextual information from neighboring sub-graphs of entity variables $x$, $y$ and $z$. Intuitively, there is a large gap here, as local sub-graphs have been found to provide important information for knowledge graph completion. Inspired by these observations, we propose Logical Entity RePresentation (LERP) to encode contextual information of entities in the knowledge graph. A LERP is designed as a vector of probabilistic logical functions on the entity's neighboring sub-graph. It is an interpretable representation while allowing for differentiable optimization. We can then incorporate LERP into probabilistic logical rule learning to learn more expressive rules. Empirical results demonstrate that with LERP, our model outperforms other rule learning methods in knowledge graph completion and is comparable or even superior to state-of-the-art black-box methods. Moreover, we find that our model can discover a more expressive family of logical rules. LERP can also be further combined with embedding learning methods like TransE to make it more interpretable.


Neuro-symbolic Rule Learning in Real-world Classification Tasks

arXiv.org Artificial Intelligence

Neuro-symbolic rule learning has attracted lots of attention as it offers better interpretability than pure neural models and scales better than symbolic rule learning. A recent approach named pix2rule proposes a neural Disjunctive Normal Form (neural DNF) module to learn symbolic rules with feed-forward layers. Although proved to be effective in synthetic binary classification, pix2rule has not been applied to more challenging tasks such as multi-label and multi-class classifications over real-world data. In this paper, we address this limitation by extending the neural DNF module to (i) support rule learning in real-world multi-class and multi-label classification tasks, (ii) enforce the symbolic property of mutual exclusivity (i.e. predicting exactly one class) in multi-class classification, and (iii) explore its scalability over large inputs and outputs. We train a vanilla neural DNF model similar to pix2rule's neural DNF module for multi-label classification, and we propose a novel extended model called neural DNF-EO (Exactly One) which enforces mutual exclusivity in multi-class classification. We evaluate the classification performance, scalability and interpretability of our neural DNF-based models, and compare them against pure neural models and a state-of-the-art symbolic rule learner named FastLAS. We demonstrate that our neural DNF-based models perform similarly to neural networks, but provide better interpretability by enabling the extraction of logical rules. Our models also scale well when the rule search space grows in size, in contrast to FastLAS, which fails to learn in multi-class classification tasks with 200 classes and in all multi-label settings.


Efficient learning of large sets of locally optimal classification rules

arXiv.org Artificial Intelligence

Conventional rule learning algorithms aim at finding a set of simple rules, where each rule covers as many examples as possible. In this paper, we argue that the rules found in this way may not be the optimal explanations for each of the examples they cover. Instead, we propose an efficient algorithm that aims at finding the best rule covering each training example in a greedy optimization consisting of one specialization and one generalization loop. These locally optimal rules are collected and then filtered for a final rule set, which is much larger than the sets learned by conventional rule learning algorithms. A new example is classified by selecting the best among the rules that cover this example. In our experiments on small to very large datasets, the approach's average classification accuracy is higher than that of state-of-the-art rule learning algorithms. Moreover, the algorithm is highly efficient and can inherently be processed in parallel without affecting the learned rule set and so the classification accuracy. We thus believe that it closes an important gap for large-scale classification rule induction.


Machine Learning with Probabilistic Law Discovery: A Concise Introduction

arXiv.org Artificial Intelligence

Probabilistic Law Discovery (PLD) is a logic based Machine Learning method, which implements a variant of probabilistic rule learning. In several aspects, PLD is close to Decision Tree/Random Forest methods, but it differs significantly in how relevant rules are defined. The learning procedure of PLD solves the optimization problem related to the search for rules (called probabilistic laws), which have a minimal length and relatively high probability. At inference, ensembles of these rules are used for prediction. Probabilistic laws are human-readable and PLD based models are transparent and inherently interpretable. Applications of PLD include classification/clusterization/regression tasks, as well as time series analysis/anomaly detection and adaptive (robotic) control. In this paper, we outline the main principles of PLD, highlight its benefits and limitations and provide some application guidelines.