Problem Solving
On the Relationship Between Strong and Weak Problem Solvers
Ernst, George W., Banerji, Ranan B.
The basic thesis put forth in this article is that a problem solver is essentially an interpreter that carries out computations implicit in the problem formulation. A good problem formulation gives rise to what is conventionally called a strong problem solver; poor formulations correspond to weak problem solvers. Knowledge-based systems are discussed in the context of this thesis. We also make observations about the relationship between search strategy and problem formulation.
On the Relationship Between Strong and Weak Problem Solvers
Ernst, George W., Banerji, Ranan B.
The basic thesis put forth in this article is that a problem solver is essentially an interpreter that carries out computations implicit in the problem formulation. A good problem formulation gives rise to what is conventionally called a strong problem solver; poor formulations correspond to weak problem solvers. Knowledge-based systems are discussed in the context of this thesis. We also make observations about the relationship between search strategy and problem formulation.
Towards a Taxonomy of Problem Solving Types
Our group's work in medical decision making has led us to formulate a framework for expert system design, in particular about how the domain knowledge may be decomposed into substructures. We propose that there exist different problem-solving types, i.e., uses of knowledge, and corresponding to each is a separate substructure specializing in that type of problem-solving. This is in contrast to the currently dominant expert system paradigm which proposes a common knowledge base accessed by knowledge-free problem-solvers of various kinds. In novice, these expert structures are often incomplete, and other knowledge structures and learning processes are needed to construct and complete them.
Research at Fairchild
The Fairchild Laboratory for Artificial Intelligence Research (FLAIR) was inaugurated in October, 1980, with the purposes of introduction AI Technology into Fairchild Camera and Instrument Corporation, and of broadening the AI base of its parent company, Schlumberger Ltd. The charter of the laboratory includes basic and applied research in all AI disciplines. Currently, we have significant efforts underway in several areas of computational perception, knowledge representation and reasoning, and AI-related architectures. The current computational environment includes several large mainframes dedicated to AI research, a number of high-performance personal scientific machines, and extensive graphics capabilities.
Towards a Taxonomy of Problem Solving Types
Our group's work in medical decision making has led us to formulate a framework for expert system design, in particular about how the domain knowledge may be decomposed into substructures. We propose that there exist different problem-solving types, i.e., uses of knowledge, and corresponding to each is a separate substructure specializing in that type of problem-solving. Each substructure is in turn further decomposed into a hierarchy of specialist which differ from each other not in the type of problem-solving, but in the conceptual content of their knowledge; e.g.; one of them may specialize in "heart disease," while another may do so in "liver," though both of them are doing the same type of problem solving. Thus ultimately all the knowledge in the system is distributed among problem-solvers which know how to use that knowledge. This is in contrast to the currently dominant expert system paradigm which proposes a common knowledge base accessed by knowledge-free problem-solvers of various kinds. In our framework there is no distinction between knowledge bases and problem-solvers: each knowledge source is a problem-solver. We have so far had occasion to deal with three generic problem-solving types in expert clinical reasoning: diagnosis (classification), data retrieval and organization, and reasoning about consequences of actions. In novice, these expert structures are often incomplete, and other knowledge structures and learning processes are needed to construct and complete them.
Research at Fairchild
The Fairchild Laboratory for Artificial Intelligence Research (FLAIR) was inaugurated in October, 1980, with the purposes of introduction AI Technology into Fairchild Camera and Instrument Corporation, and of broadening the AI base of its parent company, Schlumberger Ltd. The charter of the laboratory includes basic and applied research in all AI disciplines. Currently, we have significant efforts underway in several areas of computational perception, knowledge representation and reasoning, and AI-related architectures. We also engage in various tool-building activities to support our research program. The current computational environment includes several large mainframes dedicated to AI research, a number of high-performance personal scientific machines, and extensive graphics capabilities.
On the Discovery and Generation of Certain Heuristics
This paper explores the paradigm that heuristics are discovered by consulting simplified models of the problem domain. After describing the features of typical heuristics on some popular problems, we demonstrate that these heuristics can be obtained by the process of deleting constraints from the original problem and solving the relaxed problem which ensues. We then outline a scheme for generating such heuristics mechanically, which involves systematic refinement and deletion of constraints from the original problem specification until a semidecomposable model is identified. The solution to the latter constitutes a heuristic for the former.
An Overview of Meta-Level Architecture
Genesereth, M. R. | Smith, D. E.
"One of the biggest problems in AT programming is the difficulty of specifying control. Meta-level architecture is a knowledge engineering approach to coping with this difficulty. The key feature of the architecture is a declarative control language that allows one to write partial specifications of program behavior. This flexibility facilitates incremental system dcvclopment and the integration of disparate architectures like demons, object-oriented programming, and controlled deduction. This paper presents the language, describes an appropriate, and cliscusses the issues of compiling. It illustrales the architecture with a variety of examples and reports some experience in using the architecture in building expert systems."Earlier: M. Genesereth and D.E. Smith. Meta-level Architecture. Memo HPP-81-6, Computer Science Department, Stanford University, 1981.In Proceedings of the AAAI, Washington, DC., August, 1983
Negotiation as a metaphor for distributed problem solving
"We describe the concept of distributed problem solving and define it as the cooperative solution of problems by a decentralized and loosely coupled collection of problem solvers. This approach to problem solving offers the promise of increased performance and provides a useful medium for exploring and developing new problem-solving techniques. We present a framework called the contract net that specifies communication and control in a distributed problem solver. Task distribution is viewed as an interactive process, a discussion carried on between a node with a task to be executed and a group of nodes that may be able to execute the task. We describe the kinds of information that must be passed between nodes during the discussion in order to obtain effective problem-solving behavior. This discussion is the origin of the negotiation metaphor: Task distribution is viewed as a form of contract negotiation. We emphasize that protocols for distributed problem solving should help determine the content of the information transmitted, rather than simply provide a means of sending bits from one node to another. The use of the contract net framework is demonstrated in the solution of a simulated problem in area surveillance, of the sort encountered in ship or air traffic control. We discuss the mode of operation of a distributed sensing system, a network of nodes extending throughout a relatively large geographic area, whose primary aim is the formation of a dynamic map of traffic in the area. From the results of this preliminary study we abstract features of the framework applicable to problem solving in general, examining in particular transfer of control. Comparisons with PLANNER, CONNIVER, HEARSAY-II, AND PUP6 are used to demonstrate that negotiation—the two-way transfer of information—is a natural extension to the transfer of control mechanisms used in earlier problem-solving systems." Artificial Intelligence 20:63-109.
Krypton: A functional approach to knowledge representation
Brachman, R. | Fikes, R. | Levesque, H.
One of the challenges increasingly facing intelligence analysts, along with professionals in many other fields, is the vast amount of data which needs to be reviewed and converted into meaningful information, and ultimately into rational, wise decisions by policy makers. The advent of the world wide web (WWW) has magnified this challenge. A key hypothesis which has guided us is that threats come from ideas (or ideology), and ideas are almost always put into writing before the threats materialize. While in the past the'writing' might have taken the form of pamphlets or books, today's medium of choice is themore » WWW, precisely because it is a decentralized, flexible, and low-cost method of reaching a wide audience. However, a factor which complicates matters for the analyst is that material published on the WWW may be in any of a large number of languages. In'Identification of Threats Using Linguistics-Based Knowledge Extraction', we have sought to use Latent Semantic Analysis (LSA) and other similar text analysis techniques to map documents from the WWW, in whatever language they were originally written, to a common language-independent vector-based representation.