Bandit Algorithms boost Brain Computer Interfaces for motor-task selection of a brain-controlled button

Neural Information Processing Systems

A brain-computer interface (BCI) allows users to "communicate" with a computer without using their muscles. BCI based on sensori-motor rhythms use imaginary motor tasks, such as moving the right or left hand to send control signals. The performances of a BCI can vary greatly across users but also depend on the tasks used, making the problem of appropriate task selection an important issue. This study presents a new procedure to automatically select as fast as possible a discriminant motor task for a brain-controlled button. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory.

Dynamic Ensemble Modeling Approach to Nonstationary Neural Decoding in Brain-Computer Interfaces

Neural Information Processing Systems

Brain-computer interfaces (BCIs) have enabled prosthetic device control by decoding motor movements from neural activities. Neural signals recorded from cortex exhibit nonstationary property due to abrupt noises and neuroplastic changes in brain activities during motor control. Current state-of-the-art neural signal decoders such as Kalman filter assume fixed relationship between neural activities and motor movements, thus will fail if this assumption is not satisfied. We propose a dynamic ensemble modeling (DyEnsemble) approach that is capable of adapting to changes in neural signals by employing a proper combination of decoding functions. The DyEnsemble method firstly learns a set of diverse candidate models.

Learning to Use Working Memory in Partially Observable Environments through Dopaminergic Reinforcement

Neural Information Processing Systems

Working memory is a central topic of cognitive neuroscience because it is critical for solving real world problems in which information from multiple temporally distant sources must be combined to generate appropriate behavior. However, an often neglected fact is that learning to use working memory effectively is itself a difficult problem. The Gating" framework is a collection of psychological models that show how dopamine can train the basal ganglia and prefrontal cortex to form useful working memory representations in certain types of problems. We bring together gating with ideas from machine learning about using finite memory systems in more general problems. Thus we present a normative Gating model that learns, by online temporal difference methods, to use working memory to maximize discounted future rewards in general partially observable settings. The model successfully solves a benchmark working memory problem, and exhibits limitations similar to those observed in human experiments. Moreover, the model introduces a concise, normative definition of high level cognitive concepts such as working memory and cognitive control in terms of maximizing discounted future rewards."

Structured sparse coding via lateral inhibition

Neural Information Processing Systems

This work describes a conceptually simple method for structured sparse coding and dictionary design. Supposing a dictionary with K atoms, we introduce a structure as a set of penalties or interactions between every pair of atoms. We describe modifications of standard sparse coding algorithms for inference in this setting, and describe experiments showing that these algorithms are efficient. We show that interesting dictionaries can be learned for interactions that encode tree structures or locally connected structures. Finally, we show that our framework allows us to learn the values of the interactions from the data, rather than having them pre-specified.

Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning

Neural Information Processing Systems

The control of neuroprosthetic devices from the activity of motor cortex neurons benefits from learning effects where the function of these neurons is adapted to the control task. It was recently shown that tuning properties of neurons in monkey motor cortex are adapted selectively in order to compensate for an erroneous interpretation of their activity. In particular, it was shown that the tuning curves of those neurons whose preferred directions had been misinterpreted changed more than those of other neurons. In this article, we show that the experimentally observed self-tuning properties of the system can be explained on the basis of a simple learning rule. This learning rule utilizes neuronal noise for exploration and performs Hebbian weight updates that are modulated by a global reward signal.

A multi-agent control framework for co-adaptation in brain-computer interfaces

Neural Information Processing Systems

In a closed-loop brain-computer interface (BCI), adaptive decoders are used to learn parameters suited to decoding the user's neural response. Feedback to the user provides information which permits the neural tuning to also adapt. We present an approach to model this process of co-adaptation between the encoding model of the neural signal and the decoding algorithm as a multi-agent formulation of the linear quadratic Gaussian (LQG) control problem. In simulation we characterize how decoding performance improves as the neural encoding and adaptive decoder optimize, qualitatively resembling experimentally demonstrated closed-loop improvement. We then propose a novel, modified decoder update rule which is aware of the fact that the encoder is also changing and show it can improve simulated co-adaptation dynamics.

Information-based Adaptive Stimulus Selection to Optimize Communication Efficiency in Brain-Computer Interfaces

Neural Information Processing Systems

Stimulus-driven brain-computer interfaces (BCIs), such as the P300 speller, rely on using a sequence of sensory stimuli to elicit specific neural responses as control signals, while a user attends to relevant target stimuli that occur within the sequence. In current BCIs, the stimulus presentation schedule is typically generated in a pseudo-random fashion. Given the non-stationarity of brain electrical signals, a better strategy could be to adapt the stimulus presentation schedule in real-time by selecting the optimal stimuli that will maximize the signal-to-noise ratios of the elicited neural responses and provide the most information about the user's intent based on the uncertainties of the data being measured. However, the high-dimensional stimulus space limits the development of algorithms with tractable solutions for optimized stimulus selection to allow for real-time decision-making within the stringent time requirements of BCI processing. We derive a simple analytical solution of an information-based objective function for BCI stimulus selection by transforming the high-dimensional stimulus space into a one-dimensional space that parameterizes the objective function - the prior probability mass of the stimulus under consideration, irrespective of its contents.

Multiscale Semi-Markov Dynamics for Intracortical Brain-Computer Interfaces

Neural Information Processing Systems

Intracortical brain-computer interfaces (iBCIs) have allowed people with tetraplegia to control a computer cursor by imagining the movement of their paralyzed arm or hand. State-of-the-art decoders deployed in human iBCIs are derived from a Kalman filter that assumes Markov dynamics on the angle of intended movement, and a unimodal dependence on intended angle for each channel of neural activity. Due to errors made in the decoding of noisy neural data, as a user attempts to move the cursor to a goal, the angle between cursor and goal positions may change rapidly. We propose a dynamic Bayesian network that includes the on-screen goal position as part of its latent state, and thus allows the person's intended angle of movement to be aggregated over a much longer history of neural activity. This multiscale model explicitly captures the relationship between instantaneous angles of motion and long-term goals, and incorporates semi-Markov dynamics for motion trajectories.

Towards a Fast Steady-State Visual Evoked Potentials (SSVEP) Brain-Computer Interface (BCI) Machine Learning

Steady-state visual evoked potentials (SSVEP) brain-computer interface (BCI) provides reliable responses leading to high accuracy and information throughput. But achieving high accuracy typically requires a relatively long time window of one second or more. Various methods were proposed to improve sub-second response accuracy through subject-specific training and calibration. Substantial performance improvements were achieved with tedious calibration and subject-specific training; resulting in the user's discomfort. So, we propose a training-free method by combining spatial-filtering and temporal alignment (CSTA) to recognize SSVEP responses in sub-second response time. CSTA exploits linear correlation and non-linear similarity between steady-state responses and stimulus templates with complementary fusion to achieve desirable performance improvements. We evaluated the performance of CSTA in terms of accuracy and Information Transfer Rate (ITR) in comparison with both training-based and training-free methods using two SSVEP data-sets. We observed that CSTA achieves the maximum mean accuracy of 97.43$\pm$2.26 % and 85.71$\pm$13.41 % with four-class and forty-class SSVEP data-sets respectively in sub-second response time in offline analysis. CSTA yields significantly higher mean performance (p<0.001) than the training-free method on both data-sets. Compared with training-based methods, CSTA shows 29.33$\pm$19.65 % higher mean accuracy with statistically significant differences in time window less than 0.5 s. In longer time windows, CSTA exhibits either better or comparable performance though not statistically significantly better than training-based methods. We show that the proposed method brings advantages of subject-independent SSVEP classification without requiring training while enabling high target recognition performance in sub-second response time.

NextMind is building a real-time brain computer interface, unveils Dev Kit for $399


NextMind is developing a brain-computer interface that translates signals from the visual cortex into digital commands. We tried NextMind's device, which lets you input commands into computers and AR/VR headsets with your visual attention. Eventually, the Paris-based startup wants to let you do the same with your visual imagination. We spoke with NextMind CEO Sid Kouider ahead of CES 2020, where his company is unveiling a dev kit shipping to select developers and partners this month for $399. After the early access period, a second limited run (waitlist) of dev kits will begin shipping in Q2 2020. NextMind is part of a growing number of startups building noninvasive neural interfaces that rely on machine learning algorithms. In September 2019, Facebook acquired Ctrl-labs, which was developing an electromyography wristband that translates musculoneural signals into machine-interpretable commands. NextMind is also developing a noninvasive device, but it's an electroencephalogram (EEG) worn on the back of your head, where your brain's visual cortex is located. "We are really focalizing directly on the cortex," Kouider told VentureBeat.