Planning & Scheduling
How does one deal with the unexpected? Our world is full of surprises and we humans are often able to correctly identify a problem and respond appropriately. Consider a new driver encountering their first traffic circle; a student experiencing a hard drive failure in the middle of an assignment; an unexpected question being asked during a job interview. In situations where we have a goal (i.e., reach a destination or submit a completed assignment), we may need to alter our original plan when the unexpected occurs. Could we enable autonomous artificial intelligent agents to do the same?
A long standing area of artificial intelligence is the field of automated planning. The traditional planning problem is to generate a sequence of actions given a concrete, specific goal (e.g., I will be home at dinnertime) and a set of specific actions (e.g., drive-car, fill-gas-tank, walk, etc). Generating plans that are hopefully efficient and optimal from start to finish under different circumstances (e.g., delayed effects) is an active area of research. After a plan has been generated, and during the execution of the plan, the environment may change. For example, a robot retrieving packages in a warehouse may discover it has dropped its package. Or perhaps another robot has broken down due to a hardware failure and is blocking the path of this robot. How can a robot (or any A.I. agent) know something unexpected has happened without knowing all possible future failures?
Fundamental research on autonomy aims to find general approaches to solve this problem. One approach is to generate expectations: facts that should be true during different stages of a plan's execution. When an expectation is violated, a discrepancy occurs between the expected and perceived facts. A new trend in autonomy is to include goal reasoning capabilities. In the event of a failure, the original goal may no longer be warranted. Perhaps robust autonomous agents need to generate and change their goals in response to a changing environment.
Autonomous systems still have a long way to go and open research questions on autonomous systems remain. Funding agencies consistently seek new research on autonomy for diverse operations ranging from cybersecurity to military and vehicular autonomy. What will autonomous systems be like in the future? Will we achieve autonomous agents that can handle any situation they encounter?
- Dustin Dannenhauer