Industry
SkinCon: A skin disease dataset densely annotated by domain experts for fine-grained model debugging and analysis Roberto Novoa
However, there are only a few datasets that include concept-level meta-labels and most of these meta-labels are relevant for natural images that do not require domain expertise. Previous densely annotated datasets in medicine focused on meta-labels that are relevant to a single disease such as osteoarthritis or melanoma. In dermatology, skin disease is described using an established clinical lexicon that allows clinicians to describe physical exam findings to one another. To provide a medical dataset densely annotated by domain experts with annotations useful across multiple disease processes, we developed SkinCon: a skin disease dataset densely annotated by dermatologists. SkinCon includes 3230 images from the Fitzpatrick 17k skin disease dataset densely annotated with 48 clinical concepts, 22 of which have at least 50 images representing the concept. The concepts used were chosen by two dermatologists considering the clinical descriptor terms used to describe skin lesions.
Qualcomms 2025 Computex Highlights: Everything Announced in 20 Minutes
Qualcomm's 2025 Computex Highlights: Everything Announced in 20 Minutes Mashable Tech Science Life Social Good Entertainment Deals Shopping Games Search Cancel * * Search Result Tech Apps & Software Artificial Intelligence Cybersecurity Cryptocurrency Mobile Smart Home Social Media Tech Industry Transportation All Tech Science Space Climate Change Environment All Science Life Digital Culture Family & Parenting Health & Wellness Sex, Dating & Relationships Sleep Careers Mental Health All Life Social Good Activism Gender LGBTQ Racial Justice Sustainability Politics All Social Good Entertainment Games Movies Podcasts TV Shows Watch Guides All Entertainment SHOP THE BEST Laptops Budget Laptops Dating Apps Sexting Apps Hookup Apps VPNs Robot Vaccuums Robot Vaccum & Mop Headphones Speakers Kindles Gift Guides Mashable Choice Mashable Selects All Sex, Dating & Relationships All Laptops All Headphones All Robot Vacuums All VPN All Shopping Games Product Reviews Adult Friend Finder Bumble Premium Tinder Platinum Kindle Paperwhite PS5 vs PS5 Slim All Reviews All Shopping Deals Newsletters VIDEOS Mashable Shows All Videos Home Tech Watch all the highlights and reveals from Qualcomm's press conference at Computex 2025 in Taipei, Taiwan. Latest Videos Android XR Glasses Unveiled at Google I/O 2025 Watch Android XR Glasses in action at Google I/O 1 hour ago By Mashable Video'Caught Stealing' trailer sees Zoรซ Kravitz and Austin Butler's cat-sitting gone awry Darren Aronofsky's swaggering new film looks like a rollicking time. Loading... Subscribe These newsletters may contain advertising, deals, or affiliate links. By clicking Subscribe, you confirm you are 16 and agree to ourTerms of Use and Privacy Policy. See you at your inbox!
Amid technical glitches, California's e-bike incentive program promises to be ready for new applicants
A surge of applicants vying for a chance to be chosen for a voucher worth up to 2,000 for the California E-Bike Incentive Program triggered an error in the program's website, blocking everyone from applying. Officials say they've fixed the glitch for the next round of applications next week. The California E-Bike Incentive Program, launched by the California Air Resources Board, was established to help lower cost barriers to alternative methods of transportation such as e-bikes, with the goal of getting cars off the road and reduce greenhouse gas emissions. Eligible residents must be 18 years or older with an annual household income less than 300% of the Federal Poverty Level. The vouchers can be used toward the purchase of an electric bike.
Everything Announced at AMDs 2025 Computex Keynote in 19 Minutes
Everything Announced at AMD's 2025 Computex Keynote in 19 Minutes Mashable Tech Science Life Social Good Entertainment Deals Shopping Games Search Cancel * * Search Result Tech Apps & Software Artificial Intelligence Cybersecurity Cryptocurrency Mobile Smart Home Social Media Tech Industry Transportation All Tech Science Space Climate Change Environment All Science Life Digital Culture Family & Parenting Health & Wellness Sex, Dating & Relationships Sleep Careers Mental Health All Life Social Good Activism Gender LGBTQ Racial Justice Sustainability Politics All Social Good Entertainment Games Movies Podcasts TV Shows Watch Guides All Entertainment SHOP THE BEST Laptops Budget Laptops Dating Apps Sexting Apps Hookup Apps VPNs Robot Vaccuums Robot Vaccum & Mop Headphones Speakers Kindles Gift Guides Mashable Choice Mashable Selects All Sex, Dating & Relationships All Laptops All Headphones All Robot Vacuums All VPN All Shopping Games Product Reviews Adult Friend Finder Bumble Premium Tinder Platinum Kindle Paperwhite PS5 vs PS5 Slim All Reviews All Shopping Deals Newsletters VIDEOS Mashable Shows All Videos Home Tech Everything Announced at AMD's 2025 Computex Keynote in 19 Minutes Watch highlights from AMD's Computex press conference. Latest Videos Android XR Glasses Unveiled at Google I/O 2025 Watch Android XR Glasses in action at Google I/O 1 hour ago ByMashable Video'Caught Stealing' trailer sees Zoรซ Kravitz and Austin Butler's cat-sitting gone awry Darren Aronofsky's swaggering new film looks like a rollicking time. Loading... Subscribe These newsletters may contain advertising, deals, or affiliate links. By clicking Subscribe, you confirm you are 16 and agree to ourTerms of Use and Privacy Policy. See you at your inbox!
Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints
Distributionally robust optimization has been shown to offer a principled way to regularize learning models. In this paper, we find that Tikhonov regularization is distributionally robust in an optimal transport sense (i.e., if an adversary chooses distributions in a suitable optimal transport neighborhood of the empirical measure), provided that suitable martingale constraints are also imposed. Further, we introduce a relaxation of the martingale constraints which not only provides a unified viewpoint to a class of existing robust methods but also leads to new regularization tools. To realize these novel tools, tractable computational algorithms are proposed. As a byproduct, the strong duality theorem proved in this paper can be potentially applied to other problems of independent interest.
All Politics is Local: Redistricting via Local Fairness
In this paper, we propose to use the concept of local fairness for auditing and ranking redistricting plans. Given a redistricting plan, a deviating group is a population-balanced contiguous region in which a majority of individuals are of the same interest and in the minority of their respective districts; such a set of individuals have a justified complaint with how the redistricting plan was drawn. A redistricting plan with no deviating groups is called locally fair. We show that the problem of auditing a given plan for local fairness is NP-complete. We present an MCMC approach for auditing as well as ranking redistricting plans. We also present a dynamic programming based algorithm for the auditing problem that we use to demonstrate the efficacy of our MCMC approach. Using these tools, we test local fairness on real-world election data, showing that it is indeed possible to find plans that are almost or exactly locally fair. Further, we show that such plans can be generated while sacrificing very little in terms of compactness and existing fairness measures such as competitiveness of the districts or seat shares of the plans.
Efficient Streaming Algorithms for Graphlet Sampling Marco Bressan Cispa Helmholtz Center for Information Security Department of Computer Science Saarland University
Given a graph G and a positive integer k, the Graphlet Sampling problem asks to sample a connected induced k-vertex subgraph of G uniformly at random. Graphlet sampling enhances machine learning applications by transforming graph structures into feature vectors for tasks such as graph classification and subgraph identification, boosting neural network performance, and supporting clustered federated learning by capturing local structures and relationships.
Air Force F-16 struck by drone during training flight over Arizona in 2023
A routine training flight over Arizona in January 2023 took an unusual turn when a U.S. Air Force F-16D was struck by what was initially reported as an unidentified object, but now U.S. defense officials say was a small drone. Fox News confirmed that the incident, which occurred near Gila Bend, Arizona, on Jan. 19, 2023, was a routine training mission and was witnessed by the instructor pilot seated in the rear of the two-seat aircraft. According to a U.S. defense official, the pilot observed a "mostly white and orange object" collide with the left side of the aircraft canopy, the transparent covering over the cockpit. Initially, the object was thought to be a bird, a common hazard for aircraft. But after conducting checks during the flight and a detailed inspection upon landing at Tucson International Airport, the crew found "zero evidence" of a bird strike.
Feature-fortified Unrestricted Graph Alignment
The necessity to align two graphs, minimizing a structural distance metric, is prevalent in biology, chemistry, recommender systems, and social network analysis. Due to the problem's NP-hardness, prevailing graph alignment methods follow a modular and mediated approach, solving the problem restricted to the domain of intermediary graph representations or products like embeddings, spectra, and graph signals. Restricting the problem to this intermediate space may distort the original problem and are hence predisposed to miss high-quality solutions.
Multimodal and Multilingual Embeddings for Large-Scale Speech Mining
We present an approach to encode a speech signal into a fixed-size representation which minimizes the cosine loss with the existing massively multilingual LASER text embedding space. Sentences are close in this embedding space, independently of their language and modality, either text or audio. Using a similarity metric in that multimodal embedding space, we perform mining of audio in German, French, Spanish and English from Librivox against billions of sentences from Common Crawl. This yielded more than twenty thousand hours of aligned speech translations. To evaluate the automatically mined speech/text corpora, we train neural speech translation systems for several languages pairs.