Industry
Analog Cochlear Model for Multiresolution Speech Analysis
Liu, Weimin, Andreou, Andreas G., Jr., Moise H. Goldstein
The tradeoff between time and frequency resolution is viewed as the fundamental difference between conventional spectrographic analysis and cochlear signal processing for broadband, rapid-changing signals. The model's response exhibits a wavelet-like analysis in the scale domain that preserves good temporal resolution; the frequency of each spectral component in a broadband signal can be accurately determined from the interpeak intervals in the instantaneous firing rates of auditory fibers. Such properties of the cochlear model are demonstrated with natural speech and synthetic complex signals. 1 Introduction As a nonparametric tool, spectrogram, or short-term Fourier transform, is widely used in analyzing non-stationary signals, such speech. Usually a window is applied to the running signal and then the Fourier transform is performed. The specific window applied determines the tradeoff between temporal and spectral resolutions of the analysis, as indicated by the uncertainty principle [1].
Forecasting Demand for Electric Power
Our efforts proceed in the context of a problem suggested by the operational needs of a particular electric utility to make daily forecasts of short-term load or demand. Forecasts are made at midday (1 p.m.) on a weekday t ( Monday - Thursday), for the next evening peak e(t) (occuring usually about 8 p.m. in the winter), the daily minimum d(t
Adaptive Stimulus Representations: A Computational Theory of Hippocampal-Region Function
Gluck, Mark A., Myers, Catherine E.
We present a theory of cortico-hippocampal interaction in discrimination learning. The hippocampal region is presumed to form new stimulus representations which facilitate learning by enhancing the discriminability of predictive stimuli and compressing stimulus-stimulus redundancies. The cortical and cerebellar regions, which are the sites of long-term memory.
Hidden Markov Models in Molecular Biology: New Algorithms and Applications
Baldi, Pierre, Chauvin, Yves, Hunkapiller, Tim, McClure, Marcella A.
Hidden Markov Models (HMMs) can be applied to several important problems in molecular biology. We introduce a new convergent learning algorithm for HMMs that, unlike the classical Baum-Welch algorithm is smooth and can be applied online or in batch mode, with or without the usual Viterbi most likely path approximation. Left-right HMMs with insertion and deletion states are then trained to represent several protein families including immunoglobulins and kinases. In all cases, the models derived capture all the important statistical properties of the families and can be used efficiently in a number of important tasks such as multiple alignment, motif detection, and classification.
Second order derivatives for network pruning: Optimal Brain Surgeon
Hassibi, Babak, Stork, David G.
We investigate the use of information from all second order derivatives of the error function to perfonn network pruning (i.e., removing unimportant weights from a trained network) in order to improve generalization, simplify networks, reduce hardware or storage requirements, increase the speed of further training, and in some cases enable rule extraction. Our method, Optimal Brain Surgeon (OBS), is Significantly better than magnitude-based methods and Optimal Brain Damage [Le Cun, Denker and Sol1a, 1990], which often remove the wrong weights. OBS permits the pruning of more weights than other methods (for the same error on the training set), and thus yields better generalization on test data. Crucial to OBS is a recursion relation for calculating the inverse Hessian matrix HI from training data and structural information of the net. OBS permits a 90%, a 76%, and a 62% reduction in weights over backpropagation with weighL decay on three benchmark MONK's problems [Thrun et aI., 1991]. Of OBS, Optimal Brain Damage, and magnitude-based methods, only OBS deletes the correct weights from a trained XOR network in every case. Finally, whereas Sejnowski and Rosenberg [1987J used 18,000 weights in their NETtalk network, we used OBS to prune a network to just 1560 weights, yielding better generalization.
Optimal Depth Neural Networks for Multiplication and Related Problems
Siu, Kai-Yeung, Roychowdhury, Vwani
An artificial neural network (ANN) is commonly modeled by a threshold circuit, a network of interconnected processing units called linear threshold gates. The depth of a network represents the number of unit delays or the time for parallel computation. The SIze of a circuit is the number of gates and measures the amount of hardware. It was known that traditional logic circuits consisting of only unbounded fan-in AND, OR, NOT gates would require at least O(log n/log log n) depth to compute common arithmetic functions such as the product or the quotient of two n-bit numbers, unless we allow the size (and fan-in) to increase exponentially (in n). We show in this paper that ANNs can be much more powerful than traditional logic circuits. In particular, we prove that that iterated addition can be computed by depth-2 ANN, and multiplication and division can be computed by depth-3 ANNs with polynomial size and polynomially bounded integer weights, respectively. Moreover, it follows from known lower bound results that these ANNs are optimal in depth. We also indicate that these techniques can be applied to construct polynomial-size depth-3 ANN for powering, and depth-4 ANN for mUltiple product.
Topography and Ocular Dominance with Positive Correlations
This is motivated by experimental evidence that these phenomena may be subserved by the same mechanisms. An important aspect of this model is that ocular dominance segregation can occur when input activity is both distributed, and positively correlated between the eyes. This allows investigation of the dependence of the pattern of ocular dominance stripes on the degree of correlation between the eyes: it is found that increasing correlation leads to narrower stripes. Experiments are suggested to test whether such behaviour occurs in the natural system.
Attractor Neural Networks with Local Inhibition: from Statistical Physics to a Digitial Programmable Integrated Circuit
Networks with local inhibition are shown to have enhanced computational performance with respect to the classical Hopfield-like networks. In particular the critical capacity of the network is increased as well as its capability to store correlated patterns. Chaotic dynamic behaviour (exponentially long transients) of the devices indicates the overloading of the associative memory. An implementation based on a programmable logic device is here presented. A 16 neurons circuit is implemented whit a XILINK 4020 device.