Goto

Collaborating Authors

 Industry


Efficient Parallel Learning Algorithms for Neural Networks

Neural Information Processing Systems

Parallelizable optimization techniques are applied to the problem of learning in feedforward neural networks. In addition to having superior convergence properties, optimization techniques such as the Polak Ribiere method are also significantly more efficient than the Backpropagation algorithm. These results are based on experiments performed on small boolean learning problems and the noisy real-valued learning problem of handwritten character recognition. 1 INTRODUCTION The problem of learning in feedforward neural networks has received a great deal of attention recently because of the ability of these networks to represent seemingly complex mappings in an efficient parallel architecture. This learning problem can be characterized as an optimization problem, but it is unique in several respects. Function evaluation is very expensive. However, because the underlying network is parallel in nature, this evaluation is easily parallelizable.


Theory of Self-Organization of Cortical Maps

Neural Information Processing Systems

We have mathematically shown that cortical maps in the primary sensory cortices can be reproduced by using three hypotheses which have physiological basis and meaning. Here, our main focus is on ocular.dominance


A Low-Power CMOS Circuit Which Emulates Temporal Electrical Properties of Neurons

Neural Information Processing Systems

Popular neuron models are based upon some statistical measure of known natural behavior. Whether that measure is expressed in terms of average firing rate or a firing probability, the instantaneous neuron activation is only represented in an abstract sense. Artificial electronic neurons derived from these models represent this excitation level as a binary code or a continuous voltage at the output of a summing amplifier. While such models have been shown to perform well for many applications, and form an integral part of much current work, they only partially emulate the manner in which natural neural networks operate. They ignore, for example, differences in relative arrival times of neighboring action potentials -- an important characteristic known to exist in natural auditory and visual networks {Sejnowski, 1986}. They are also less adaptable to fme-grained, neuron-centered learning, like the post-tetanic facilitation observed in natural neurons. We are investigating the implementation and application of neuron circuits which better approximate natural neuron function.



An Optimality Principle for Unsupervised Learning

Neural Information Processing Systems

We propose an optimality principle for training an unsupervised feedforward neural network based upon maximal ability to reconstruct the input data from the network outputs. We describe an algorithm which can be used to train either linear or nonlinear networks with certain types of nonlinearity. Examples of applications to the problems of image coding, feature detection, and analysis of randomdot stereograms are presented.


A Computationally Robust Anatomical Model for Retinal Directional Selectivity

Neural Information Processing Systems

We analyze a mathematical model for retinal directionally selective cells based on recent electrophysiological data, and show that its computation of motion direction is robust against noise and speed.


Neural Architecture

Neural Information Processing Systems

While we are waiting for the ultimate biophysics of cell membranes and synapses to be completed, we may speculate on the shapes of neurons and on the patterns of their connections. Much of this will be significant whatever the outcome of future physiology. Take as an example the isotropy, anisotropy and periodicity of different kinds of neural networks. The very existence of these different types in different parts of the brain (or in different brains) defeats explanation in terms of embryology; the mechanisms of development are able to make one kind of network or another. The reasons for the difference must be in the functions they perform.


Neural Control of Sensory Acquisition: The Vestibulo-Ocular Reflex

Neural Information Processing Systems

We present a new hypothesis that the cerebellum plays a key role in actively controlling the acquisition of sensory infonnation by the nervous system. In this paper we explore this idea by examining the function of a simple cerebellar-related behavior, the vestibula-ocular reflex or VOR, in which eye movements are generated to minimize image slip on the retina during rapid head movements. Considering this system from the point of view of statistical estimation theory, our results suggest that the transfer function of the VOR, often regarded as a static or slowly modifiable feature of the system, should actually be continuously and rapidly changed during head movements. We further suggest that these changes are under the direct control of the cerebellar cortex and propose experiments to test this hypothesis.


An Analog VLSI Chip for Thin-Plate Surface Interpolation

Neural Information Processing Systems

Reconstructing a surface from sparse sensory data is a well-known problem iIi computer vision. This paper describes an experimental analog VLSI chip for smooth surface interpolation from sparse depth data. An eight-node ID network was designed in 3J.lm CMOS and successfully tested.


Modeling the Olfactory Bulb - Coupled Nonlinear Oscillators

Neural Information Processing Systems

A mathematical model based on the bulbar anatomy and electrophysiology is described. Simulations produce a 35-60 Hz modulated activity coherent across the bulb, mimicing the observed field potentials. The decision states (for the odor information) here can be thought of as stable cycles, rather than point stable states typical of simpler neuro-computing models. Analysis and simulations show that a group of coupled nonlinear oscillators are responsible for the oscillatory activities determined by the odor input, and that the bulb, with appropriate inputs from higher centers, can enhance or suppress the sensitivity to partiCUlar odors. The model provides a framework in which to understand the transform between odor input and the bulbar output to olfactory cortex.