Goto

Collaborating Authors

 Industry


Neural Networks Structured for Control Application to Aircraft Landing

Neural Information Processing Systems

A recurrent back-propagation neural network architecture was then designed to numerically estimate the parameters of an optimal nonlinear control law for landing the aircraft. The performance of the network was then evaluated.


A Model of Distributed Sensorimotor Control in the Cockroach Escape Turn

Neural Information Processing Systems

In response to a puff of wind, the American cockroach turns away and runs. The circuit underlying the initial turn of this escape response consists of three populations of individually identifiable nerve cells and appears to employ distributed representations in its operation. We have reconstructed several neuronal and behavioral properties of this system using simplified neural network models and the backpropagation learning algorithm constrained by known structural characteristics of the circuitry. In order to test and refine the model, we have also compared the model's responses to various lesions with the insect's responses to similar lesions.


VLSI Implementation of TInMANN

Neural Information Processing Systems

A massively parallel, all-digital, stochastic architecture - TlnMAN N - is described which performs competitive and Kohonen types of learning. A VLSI design is shown for a TlnMANN neuron which fits within a small, inexpensive MOSIS TinyChip frame, yet which can be used to build larger networks of several hundred neurons. The neuron operates at a speed of 15 MHz which allows the network to process 290,000 training examples per second. Use of level sensitive scan logic provides the chip with 100% fault coverage, permitting very reliable neural systems to be built.


A four neuron circuit accounts for change sensitive inhibition in salamander retina

Neural Information Processing Systems

In salamander retina, the response of On-Off ganglion cells to a central flash is reduced by movement in the receptive field surround. Through computer simulation of a 2-D model which takes into account their anatomical and physiological properties, we show that interactions between four neuron types (two bipolar and two amacrine) may be responsible for the generation and lateral conductance of this change sensitive inhibition. The model shows that the four neuron circuit can account for previously observed movement sensitive reductions in ganglion cell sensitivity and allows visualization and prediction of the spatiotemporal pattern of activity in change sensitive retinal cells.


Adjoint-Functions and Temporal Learning Algorithms in Neural Networks

Neural Information Processing Systems

The development of learning algorithms is generally based upon the minimization of an energy function. It is a fundamental requirement to compute the gradient of this energy function with respect to the various parameters of the neural architecture, e.g., synaptic weights, neural gain,etc. In principle, this requires solving a system of nonlinear equations for each parameter of the model, which is computationally very expensive. A new methodology for neural learning of time-dependent nonlinear mappings is presented. It exploits the concept of adjoint operators to enable a fast global computation of the network's response to perturbations in all the systems parameters. The importance of the time boundary conditions of the adjoint functions is discussed. An algorithm is presented in which the adjoint sensitivity equations are solved simultaneously (Le., forward in time) along with the nonlinear dynamics of the neural networks. This methodology makes real-time applications and hardware implementation of temporal learning feasible.


Flight Control in the Dragonfly: A Neurobiological Simulation

Neural Information Processing Systems

Neural network simulations of the dragonfly flight neurocontrol system have been developed to understand how this insect uses complex, unsteady aerodynamics. The simulation networks account for the ganglionic spatial distribution of cells as well as the physiologic operating range and the stochastic cellular fIring history of each neuron. In addition the motor neuron firing patterns, "flight command sequences", were utilized. Simulation training was targeted against both the cellular and flight motor neuron firing patterns. The trained networks accurately resynthesized the intraganglionic cellular firing patterns. These in tum controlled the motor neuron fIring patterns that drive wing musculature during flight. Such networks provide both neurobiological analysis tools and fIrst generation controls for the use of "unsteady" aerodynamics.



Connectionist Music Composition Based on Melodic and Stylistic Constraints

Neural Information Processing Systems

We describe a recurrent connectionist network, called CONCERT, that uses a set of melodies written in a given style to compose new melodies in that style. CONCERT is an extension of a traditional algorithmic composition technique in which transition tables specify the probability of the next note as a function of previous context. A central ingredient of CONCERT is the use of a psychologically-grounded representation of pitch.


Asymptotic slowing down of the nearest-neighbor classifier

Neural Information Processing Systems

M2/n' for sufficiently large values of M. Here, Poo(error) denotes the probability of error in the infinite sample limit, and is at most twice the error of a Bayes classifier. Although the value of the coefficient a depends upon the underlying probability distributions, the exponent of M is largely distribution free. We thus obtain a concise relation between a classifier's ability to generalize from a finite reference sample and the dimensionality of the feature space, as well as an analytic validation of Bellman's well known "curse of dimensionality." 1 INTRODUCTION One of the primary tasks assigned to neural networks is pattern classification. Common applications include recognition problems dealing with speech, handwritten characters, DNA sequences, military targets, and (in this conference) sexual identity. Two fundamental concepts associated with pattern classification are generalization (how well does a classifier respond to input data it has never encountered before?) and scalability (how are a classifier's processing and training requirements affected by increasing the number of features that describe the input patterns?).