Goto

Collaborating Authors

 Industry


How Oscillatory Neuronal Responses Reflect Bistability and Switching of the Hidden Assembly Dynamics

Neural Information Processing Systems

A switching between apparently coherent (oscillatory) and stochastic episodes of activity has been observed in responses from cat and monkey visual cortex. We describe the dynamics of these phenomena in two parallel approaches,a phenomenological and a rather microscopic one. On the one hand we analyze neuronal responses in terms of a hidden state model (HSM). The parameters of this model are extracted directly from experimental spiketrains. They characterize the underlying dynamics as well as the coupling of individual neurons to the network. This phenomenological modelthus provides a new framework for the experimental analysis of network dynamics.


Topography and Ocular Dominance with Positive Correlations

Neural Information Processing Systems

This is motivated by experimental evidencethat these phenomena may be subserved by the same mechanisms. An important aspect of this model is that ocular dominance segregationcan occur when input activity is both distributed, and positively correlated between the eyes. This allows investigation of the dependence of the pattern of ocular dominance stripes on the degree of correlation between the eyes: it is found that increasing correlation leads to narrower stripes. Experiments are suggested to test whether such behaviour occursin the natural system.


Improving Performance in Neural Networks Using a Boosting Algorithm

Neural Information Processing Systems

A boosting algorithm converts a learning machine with error rate less than 50% to one with an arbitrarily low error rate. However, the algorithm discussed here depends on having a large supply of independent training samples. We show how to circumvent this problem and generate an ensemble of learning machines whose performance in optical character recognition problems is dramatically improved over that of a single network. We report the effect of boosting on four databases (all handwritten) consisting of 12,000 digits from segmented ZIP codes from the United State Postal Service (USPS) and the following from the National Institute of Standards and Testing (NIST): 220,000 digits, 45,000 upper case alphas, and 45,000 lower case alphas. We use two performance measures: the raw error rate (no rejects) and the reject rate required to achieve a 1% error rate on the patterns not rejected.


Adaptive Stimulus Representations: A Computational Theory of Hippocampal-Region Function

Neural Information Processing Systems

We present a theory of cortico-hippocampal interaction in discrimination learning. The hippocampal region is presumed to form new stimulus representations which facilitate learning by enhancing the discriminability of predictive stimuli and compressing stimulus-stimulus redundancies. The cortical and cerebellar regions, which are the sites of long-term memory.


Parameterising Feature Sensitive Cell Formation in Linsker Networks in the Auditory System

Neural Information Processing Systems

This paper examines and extends the work of Linsker (1986) on self organising feature detectors. Linsker concentrates on the visual processing system, but infers that the weak assumptions made will allow the model to be used in the processing of other sensory information. This claim is examined here, with special attention paid to the auditory system, where there is much lower connectivity and therefore more statistical variability. Online training is utilised, to obtain an idea of training times. These are then compared to the time available to prenatal mammals for the formation of feature sensitive cells. 1 INTRODUCTION Within the last thirty years, a great deal of research has been carried out in an attempt to understand the development of cells in the pathways between the sensory apparatus and the cortex in mammals. For example, theories for the development of feature detectors were forwarded by Nass and Cooper (1975), by Grossberg (1976) and more recently Obermayer et al (1990). Hubel and Wiesel (1961) established the existence of several different types of feature sensitive cell in the visual cortex of cats. Various subsequent experiments have 1007 1008 Walton and Bisset shown that a considerable amount of development takes place before birth (i.e.


Word Space

Neural Information Processing Systems

Representations for semantic information about words are necessary for many applications of neural networks in natural language processing. This paper describes an efficient, corpus-based method for inducing distributed semantic representations for a large number of words (50,000) from lexical coccurrence statistics by means of a large-scale linear regression. The representations are successfully applied to word sense disambiguation using a nearest neighbor method. 1 Introduction Many tasks in natural language processing require access to semantic information about lexical items and text segments.



Visual Motion Computation in Analog VLSI Using Pulses

Neural Information Processing Systems

The real time computation of motion from real images using a single chip with integrated sensors is a hard problem. We present two analog VLSI schemes that use pulse domain neuromorphic circuits to compute motion. Pulses of variable width, rather than graded potentials, represent a natural medium for evaluating temporal relationships.


Interposing an ontogenetic model between Genetic Algorithms and Neural Networks

Neural Information Processing Systems

The relationships between learning, development and evolution in Nature is taken seriously, to suggest a model of the developmental process whereby the genotypes manipulated by the Genetic Algorithm (GA) might be expressed to form phenotypic neural networks (NNet) that then go on to learn. ONTOL is a grammar for generating polynomial NN ets for time-series prediction. Genomes correspond to an ordered sequence of ONTOL productions and define a grammar that is expressed to generate a NNet. The NNet's weights are then modified by learning, and the individual's prediction error is used to determine GA fitness. A new gene doubling operator appears critical to the formation of new genetic alternatives in the preliminary but encouraging results presented.


Analog Cochlear Model for Multiresolution Speech Analysis

Neural Information Processing Systems

The tradeoff between time and frequency resolution is viewed as the fundamental difference between conventional spectrographic analysis and cochlear signal processing for broadband, rapid-changing signals. The model's response exhibits a wavelet-like analysis in the scale domain that preserves good temporal resolution; the frequency of each spectral component in a broadband signal can be accurately determined from the interpeak intervals in the instantaneous firing rates of auditory fibers. Such properties of the cochlear model are demonstrated with natural speech and synthetic complex signals. 1 Introduction As a nonparametric tool, spectrogram, or short-term Fourier transform, is widely used in analyzing non-stationary signals, such speech. Usually a window is applied to the running signal and then the Fourier transform is performed. The specific window applied determines the tradeoff between temporal and spectral resolutions of the analysis, as indicated by the uncertainty principle [1].