Media
Knowware: the third star after Hardware and Software
This book proposes to separate knowledge from software and to make it a commodity that is called knowware. The architecture, representation and function of Knowware are discussed. The principles of knowware engineering and its three life cycle models: furnace model, crystallization model and spiral model are proposed and analyzed. Techniques of software/knowware co-engineering are introduced. A software component whose knowledge is replaced by knowware is called mixware. An object and component oriented development schema of mixware is introduced. In particular, the tower model and ladder model for mixware development are proposed and discussed. Finally, knowledge service and knowware based Web service are introduced and compared with Web service. In summary, knowware, software and hardware should be considered as three equally important underpinnings of IT industry. Ruqian Lu is a professor of computer science of the Institute of Mathematics, Academy of Mathematics and System Sciences. He is a fellow of Chinese Academy of Sciences. His research interests include artificial intelligence, knowledge engineering and knowledge based software engineering. He has published more than 100 papers and 10 books. He has won two first class awards from the Academia Sinica and a National second class prize from the Ministry of Science and Technology. He has also won the sixth Hua Loo-keng Mathematics Prize.
A structure from motion inequality
Knill, Oliver, Ramirez-Herran, Jose
We state an elementary inequality for the structure from motion problem for m cameras and n points. This structure from motion inequality relates space dimension, camera parameter dimension, the number of cameras and number points and global symmetry properties and provides a rigorous criterion for which reconstruction is not possible with probability 1. Mathematically the inequality is based on Frobenius theorem which is a geometric incarnation of the fundamental theorem of linear algebra. The paper also provides a general mathematical formalism for the structure from motion problem. It includes the situation the points can move while the camera takes the pictures.
Space and camera path reconstruction for omni-directional vision
Knill, Oliver, Ramirez-Herran, Jose
In this paper, we address the inverse problem of reconstructing a scene as well as the camera motion from the image sequence taken by an omni-directional camera. Our structure from motion results give sharp conditions under which the reconstruction is unique. For example, if there are three points in general position and three omni-directional cameras in general position, a unique reconstruction is possible up to a similarity. We then look at the reconstruction problem with m cameras and n points, where n and m can be large and the over-determined system is solved by least square methods. The reconstruction is robust and generalizes to the case of a dynamic environment where landmarks can move during the movie capture. Possible applications of the result are computer assisted scene reconstruction, 3D scanning, autonomous robot navigation, medical tomography and city reconstructions.
Learning Probabilistic Models of Word Sense Disambiguation
This dissertation presents several new methods of supervised and unsupervised learning of word sense disambiguation models. The supervised methods focus on performing model searches through a space of probabilistic models, and the unsupervised methods rely on the use of Gibbs Sampling and the Expectation Maximization (EM) algorithm. In both the supervised and unsupervised case, the Naive Bayesian model is found to perform well. An explanation for this success is presented in terms of learning rates and bias-variance decompositions.
The Cyborg Astrobiologist: Porting from a wearable computer to the Astrobiology Phone-cam
Bartolo, Alexandra, McGuire, Patrick C., Camilleri, Kenneth P., Spiteri, Christopher, Borg, Jonathan C., Farrugia, Philip J., Ormo, Jens, Gomez-Elvira, Javier, Rodriguez-Manfredi, Jose Antonio, Diaz-Martinez, Enrique, Ritter, Helge, Haschke, Robert, Oesker, Markus, Ontrup, Joerg
We have used a simple camera phone to significantly improve an `exploration system' for astrobiology and geology. This camera phone will make it much easier to develop and test computer-vision algorithms for future planetary exploration. We envision that the `Astrobiology Phone-cam' exploration system can be fruitfully used in other problem domains as well.
Personalizing Image Search Results on Flickr
Lerman, Kristina, Plangprasopchok, Anon, Wong, Chio
The social media site Flickr allows users to upload their photos, annotate them with tags, submit them to groups, and also to form social networks by adding other users as contacts. Flickr offers multiple ways of browsing or searching it. One option is tag search, which returns all images tagged with a specific keyword. If the keyword is ambiguous, e.g., ``beetle'' could mean an insect or a car, tag search results will include many images that are not relevant to the sense the user had in mind when executing the query. We claim that users express their photography interests through the metadata they add in the form of contacts and image annotations. We show how to exploit this metadata to personalize search results for the user, thereby improving search performance. First, we show that we can significantly improve search precision by filtering tag search results by user's contacts or a larger social network that includes those contact's contacts. Secondly, we describe a probabilistic model that takes advantage of tag information to discover latent topics contained in the search results. The users' interests can similarly be described by the tags they used for annotating their images. The latent topics found by the model are then used to personalize search results by finding images on topics that are of interest to the user.
Modelling Complexity in Musical Rhythm
Liou, Cheng-Yuan, Wu, Tai-Hei, Lee, Chia-Ying
This paper constructs a tree structure for the music rhythm using the L-system. It models the structure as an automata and derives its complexity. It also solves the complexity for the L-system. This complexity can resolve the similarity between trees. This complexity serves as a measure of psychological complexity for rhythms. It resolves the music complexity of various compositions including the Mozart effect K488. Keyword: music perception, psychological complexity, rhythm, L-system, automata, temporal associative memory, inverse problem, rewriting rule, bracketed string, tree similarity
Bayesian Sets
Ghahramani, Zoubin, Heller, Katherine A.
Sets", we consider the problem of retrieving items from a concept or cluster, given a query consisting of a few items from that cluster. We formulate this as a Bayesian inference problem and describe a very simple algorithm for solving it. Our algorithm uses a modelbased concept of a cluster and ranks items using a score which evaluates the marginal probability that each item belongs to a cluster containing the query items. For exponential family models with conjugate priors this marginal probability is a simple function of sufficient statistics. We focus on sparse binary data and show that our score can be evaluated exactly using a single sparse matrix multiplication, making it possible to apply our algorithm to very large datasets. We evaluate our algorithm on three datasets: retrieving movies from EachMovie, finding completions of author sets from the NIPS dataset, and finding completions of sets of words appearing in the Grolier encyclopedia.
Separation of Music Signals by Harmonic Structure Modeling
Zhang, Yun-gang, Zhang, Chang-shui
Separation of music signals is an interesting but difficult problem. It is helpful for many other music researches such as audio content analysis. In this paper, a new music signal separation method is proposed, which is based on harmonic structure modeling. The main idea of harmonic structure modelingis that the harmonic structure of a music signal is stable, so a music signal can be represented by a harmonic structure model. Accordingly, acorresponding separation algorithm is proposed. The main idea is to learn a harmonic structure model for each music signal in the mixture, and then separate signals by using these models to distinguish harmonic structures of different signals. Experimental results show that the algorithm can separate signals and obtain not only a very high Signalto-Noise Ratio(SNR) but also a rather good subjective audio quality.
Bayesian Sets
Ghahramani, Zoubin, Heller, Katherine A.
Sets", we consider the problem of retrieving items from a concept or cluster, given a query consisting of a few items from that cluster. We formulate this as a Bayesian inference problem and describe avery simple algorithm for solving it. Our algorithm uses a modelbased concept of a cluster and ranks items using a score which evaluates the marginal probability that each item belongs to a cluster containing the query items. For exponential family models with conjugate priors this marginal probability is a simple function of sufficient statistics. We focus on sparse binary data and show that our score can be evaluated exactly usinga single sparse matrix multiplication, making it possible to apply our algorithm to very large datasets. We evaluate our algorithm on three datasets: retrieving movies from EachMovie, finding completions of author sets from the NIPS dataset, and finding completions of sets of words appearing in the Grolier encyclopedia.