Media
Interactive Narrative: An Intelligent Systems Approach
Riedl, Mark Owen (Georgia Institute of Technology) | Bulitko, Vadim (University of Alberta)
Interactive narrative is a form of digital interactive experience in which users create or influence a dramatic storyline through their actions. The goal of an interactive narrative system is to immerse the user in a virtual world such that he or she believes that they are an integral part of an unfolding story and that their actions can significantly alter the direction and/or outcome of the story.In this article we review the ways in which artificial intelligence can be brought to bear on the creation of interactive narrative systems. We lay out the landscape of about 20 years of interactive narrative research and explore the successes as well as open research questions pertaining to the novel use of computational narrative intelligence in the pursuit of entertainment, education, and training.
An Architecture for Probabilistic Concept-Based Information Retrieval
Fung, Robert, Crawford, S. L., Appelbaum, Lee A., Tong, Richard M.
While concept-based methods for information retrieval can provide improved performance over more conventional techniques, they require large amounts of effort to acquire the concepts and their qualitative and quantitative relationships. This paper discusses an architecture for probabilistic concept-based information retrieval which addresses the knowledge acquisition problem. The architecture makes use of the probabilistic networks technology for representing and reasoning about concepts and includes a knowledge acquisition component which partially automates the construction of concept knowledge bases from data. We describe two experiments that apply the architecture to the task of retrieving documents about terrorism from a set of documents from the Reuters news service. The experiments provide positive evidence that the architecture design is feasible and that there are advantages to concept-based methods.
Topic Discovery through Data Dependent and Random Projections
Ding, Weicong, Rohban, Mohammad H., Ishwar, Prakash, Saligrama, Venkatesh
We present algorithms for topic modeling based on the geometry of cross-document word-frequency patterns. This perspective gains significance under the so called separability condition. This is a condition on existence of novel-words that are unique to each topic. We present a suite of highly efficient algorithms based on data-dependent and random projections of word-frequency patterns to identify novel words and associated topics. We will also discuss the statistical guarantees of the data-dependent projections method based on two mild assumptions on the prior density of topic document matrix. Our key insight here is that the maximum and minimum values of cross-document frequency patterns projected along any direction are associated with novel words. While our sample complexity bounds for topic recovery are similar to the state-of-art, the computational complexity of our random projection scheme scales linearly with the number of documents and the number of words per document. We present several experiments on synthetic and real-world datasets to demonstrate qualitative and quantitative merits of our scheme.
Visualizing and Interacting with Concept Hierarchies
Crampes, Michel, Plantié, Michel
Concept Hierarchies and Formal Concept Analysis are theoretically well grounded and largely experimented methods. They rely on line diagrams called Galois lattices for visualizing and analysing object-attribute sets. Galois lattices are visually seducing and conceptually rich for experts. However they present important drawbacks due to their concept oriented overall structure: analysing what they show is difficult for non experts, navigation is cumbersome, interaction is poor, and scalability is a deep bottleneck for visual interpretation even for experts. In this paper we introduce semantic probes as a means to overcome many of these problems and extend usability and application possibilities of traditional FCA visualization methods. Semantic probes are visual user centred objects which extract and organize reduced Galois sub-hierarchies. They are simpler, clearer, and they provide a better navigation support through a rich set of interaction possibilities. Since probe driven sub-hierarchies are limited to users focus, scalability is under control and interpretation is facilitated. After some successful experiments, several applications are being developed with the remaining problem of finding a compromise between simplicity and conceptual expressivity.
Continuous-time Infinite Dynamic Topic Models
Topic models are probabilistic models for discovering topical themes in collections of documents. In real world applications, these models provide us with the means of organizing what would otherwise be unstructured collections. They can help us cluster a huge collection into different topics or find a subset of the collection that resembles the topical theme found in an article at hand. The first wave of topic models developed were able to discover the prevailing topics in a big collection of documents spanning a period of time. It was later realized that these time-invariant models were not capable of modeling 1) the time varying number of topics they discover and 2) the time changing structure of these topics. Few models were developed to address this two deficiencies. The online-hierarchical Dirichlet process models the documents with a time varying number of topics. It varies the structure of the topics over time as well. However, it relies on document order, not timestamps to evolve the model over time. The continuous-time dynamic topic model evolves topic structure in continuous-time. However, it uses a fixed number of topics over time. In this dissertation, I present a model, the continuous-time infinite dynamic topic model, that combines the advantages of these two models 1) the online-hierarchical Dirichlet process, and 2) the continuous-time dynamic topic model. More specifically, the model I present is a probabilistic topic model that does the following: 1) it changes the number of topics over continuous time, and 2) it changes the topic structure over continuous-time. I compared the model I developed with the two other models with different setting values. The results obtained were favorable to my model and showed the need for having a model that has a continuous-time varying number of topics and topic structure.
Towards Case-Based Preference Elicitation: Similarity Measures on Preference Structures
While decision theory provides an appealing normative framework for representing rich preference structures, eliciting utility or value functions typically incurs a large cost. For many applications involving interactive systems this overhead precludes the use of formal decision-theoretic models of preference. Instead of performing elicitation in a vacuum, it would be useful if we could augment directly elicited preferences with some appropriate default information. In this paper we propose a case-based approach to alleviating the preference elicitation bottleneck. Assuming the existence of a population of users from whom we have elicited complete or incomplete preference structures, we propose eliciting the preferences of a new user interactively and incrementally, using the closest existing preference structures as potential defaults. Since a notion of closeness demands a measure of distance among preference structures, this paper takes the first step of studying various distance measures over fully and partially specified preference structures. We explore the use of Euclidean distance, Spearmans footrule, and define a new measure, the probabilistic distance. We provide computational techniques for all three measures.
The Decision-Theoretic Interactive Video Advisor
The need to help people choose among large numbers of items and to filter through large amounts of information has led to a flood of research in construction of personal recommendation agents. One of the central issues in constructing such agents is the representation and elicitation of user preferences or interests. This topic has long been studied in Decision Theory, but surprisingly little work in the area of recommender systems has made use of formal decision-theoretic techniques. This paper describes DIVA, a decision-theoretic agent for recommending movies that contains a number of novel features. DIVA represents user preferences using pairwise comparisons among items, rather than numeric ratings. It uses a novel similarity measure based on the concept of the probability of conflict between two orderings of items. The system has a rich representation of preference, distinguishing between a user's general taste in movies and his immediate interests. It takes an incremental approach to preference elicitation in which the user can provide feedback if not satisfied with the recommendation list. We empirically evaluate the performance of the system using the EachMovie collaborative filtering database.
Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments
Popescul, Alexandrin, Ungar, Lyle H., Pennock, David M, Lawrence, Steve
Recommender systems leverage product and community information to target products to consumers. Researchers have developed collaborative recommenders, content-based recommenders, and (largely ad-hoc) hybrid systems. We propose a unified probabilistic framework for merging collaborative and content-based recommendations. We extend Hofmann's [1999] aspect model to incorporate three-way co-occurrence data among users, items, and item content. The relative influence of collaboration data versus content data is not imposed as an exogenous parameter, but rather emerges naturally from the given data sources. Global probabilistic models coupled with standard Expectation Maximization (EM) learning algorithms tend to drastically overfit in sparse-data situations, as is typical in recommendation applications. We show that secondary content information can often be used to overcome sparsity. Experiments on data from the ResearchIndex library of Computer Science publications show that appropriate mixture models incorporating secondary data produce significantly better quality recommenders than k-nearest neighbors (k-NN). Global probabilistic models also allow more general inferences than local methods like k-NN.
Determinantal point processes for machine learning
Determinantal point processes (DPPs) are elegant probabilistic models of repulsion that arise in quantum physics and random matrix theory. In contrast to traditional structured models like Markov random fields, which become intractable and hard to approximate in the presence of negative correlations, DPPs offer efficient and exact algorithms for sampling, marginalization, conditioning, and other inference tasks. We provide a gentle introduction to DPPs, focusing on the intuitions, algorithms, and extensions that are most relevant to the machine learning community, and show how DPPs can be applied to real-world applications like finding diverse sets of high-quality search results, building informative summaries by selecting diverse sentences from documents, modeling non-overlapping human poses in images or video, and automatically building timelines of important news stories.
A Mixed Graphical Model for Rhythmic Parsing
A method is presented for the rhythmic parsing problem: Given a sequence of observed musical note onset times, we estimate the corresponding notated rhythm and tempo process. A graphical model is developed that represents the simultaneous evolution of tempo and rhythm and relates these hidden quantities to observations. The rhythm variables are discrete and the tempo and observation variables are continuous. We show how to compute the globally most likely configuration of the tempo and rhythm variables given an observation of note onset times. Preliminary experiments are presented on a small data set. A generalization to arbitrary conditional Gaussian distributions is outlined.