Commodity Chemicals

Analysis of Atomistic Representations Using Weighted Skip-Connections Machine Learning

In this work, we extend the SchNet architecture by using weighted skip connections to assemble the final representation. This enables us to study the relative importance of each interaction block for property prediction. We demonstrate on both the QM9 and MD17 dataset that their relative weighting depends strongly on the chemical composition and configurational degrees of freedom of the molecules which opens the path towards a more detailed understanding of machine learning models for molecules.

Quantum-chemical insights from interpretable atomistic neural networks Machine Learning

With the rise of deep neural networks for quantum chemistry applications, there is a pressing need for architectures that, beyond delivering accurate predictions of chemical properties, are readily interpretable by researchers. Here, we describe interpretation techniques for atomistic neural networks on the example of Behler-Parrinello networks as well as the end-to-end model SchNet. Both models obtain predictions of chemical properties by aggregating atom-wise contributions. These latent variables can serve as local explanations of a prediction and are obtained during training without additional cost. Due to their correspondence to well-known chemical concepts such as atomic energies and partial charges, these atom-wise explanations enable insights not only about the model but more importantly about the underlying quantum-chemical regularities. We generalize from atomistic explanations to 3d space, thus obtaining spatially resolved visualizations which further improve interpretability. Finally, we analyze learned embeddings of chemical elements that exhibit a partial ordering that resembles the order of the periodic table. As the examined neural networks show excellent agreement with chemical knowledge, the presented techniques open up new venues for data-driven research in chemistry, physics and materials science.

A One-Sided Classification Toolkit with Applications in the Analysis of Spectroscopy Data Machine Learning

This dissertation investigates the use of one-sided classification algorithms in the application of separating hazardous chlorinated solvents from other materials, based on their Raman spectra. The experimentation is carried out using a new one-sided classification toolkit that was designed and developed from the ground up. In the one-sided classification paradigm, the objective is to separate elements of the target class from all outliers. These one-sided classifiers are generally chosen, in practice, when there is a deficiency of some sort in the training examples. Sometimes outlier examples can be rare, expensive to label, or even entirely absent. However, this author would like to note that they can be equally applicable when outlier examples are plentiful but nonetheless not statistically representative of the complete outlier concept. It is this scenario that is explicitly dealt with in this research work. In these circumstances, one-sided classifiers have been found to be more robust that conventional multi-class classifiers. The term "unexpected" outliers is introduced to represent outlier examples, encountered in the test set, that have been taken from a different distribution to the training set examples. These are examples that are a result of an inadequate representation of all possible outliers in the training set. It can often be impossible to fully characterise outlier examples given the fact that they can represent the immeasurable quantity of "everything else" that is not a target. The findings from this research have shown the potential drawbacks of using conventional multi-class classification algorithms when the test data come from a completely different distribution to that of the training samples.

Band Target Entropy Minimization and Target Partial Least Squares for Spectral Recovery and Calibration Machine Learning

The resolution and calibration of pure spectra of minority components in measurements of chemical mixtures without prior knowledge of the mixture is a challenging problem. In this work, a combination of band target entropy minimization (BTEM) and target partial least squares (T-PLS) was used to obtain estimates for single pure component spectra and to calibrate those estimates in a true, one-at-a-time fashion. This approach allows for minor components to be targeted and their relative amounts estimated in the presence of other varying components in spectral data. The use of T-PLS estimation is an improvement to the BTEM method because it overcomes the need to identify all of the pure components prior to estimation. Estimated amounts from this combination were found to be similar to those obtained from a standard method, multivariate curve resolution-alternating least squares (MCR-ALS), on a simple, three component mixture dataset. Studies from two experimental datasets demonstrate where the combination of BTEM and T-PLS could model the pure component spectra and obtain concentration profiles of minor components but MCR-ALS could not.

A Deformable Interface for Human Touch Recognition using Stretchable Carbon Nanotube Dielectric Elastomer Sensors and Deep Neural Networks Machine Learning

User interfaces provide an interactive window between physical and virtual environments. A new concept in the field of human-computer interaction is a soft user interface; a compliant surface that facilitates touch interaction through deformation. Despite the potential of these interfaces, they currently lack a signal processing framework that can efficiently extract information from their deformation. Here we present OrbTouch, a device that uses statistical learning algorithms, based on convolutional neural networks, to map deformations from human touch to categorical labels (i.e., gestures) and touch location using stretchable capacitor signals as inputs. We demonstrate this approach by using the device to control the popular game Tetris. OrbTouch provides a modular, robust framework to interpret deformation in soft media, laying a foundation for new modes of human computer interaction through shape changing solids.

Rapid Bayesian optimisation for synthesis of short polymer fiber materials Machine Learning

The discovery of processes for the synthesis of new materials involves many decisions about process design, operation, and material properties. Experimentation is crucial but as complexity increases, exploration of variables can become impractical using traditional combinatorial approaches. We describe an iterative method which uses machine learning to optimise process development, incorporating multiple qualitative and quantitative objectives. We demonstrate the method with a novel fluid processing platform for synthesis of short polymer fibers, and show how the synthesis process can be efficiently directed to achieve material and process objectives.

SchNet: A continuous-filter convolutional neural network for modeling quantum interactions Machine Learning

Deep learning has the potential to revolutionize quantum chemistry as it is ideally suited to learn representations for structured data and speed up the exploration of chemical space. While convolutional neural networks have proven to be the first choice for images, audio and video data, the atoms in molecules are not restricted to a grid. Instead, their precise locations contain essential physical information, that would get lost if discretized. Thus, we propose to use continuous-filter convolutional layers to be able to model local correlations without requiring the data to lie on a grid. We apply those layers in SchNet: a novel deep learning architecture modeling quantum interactions in molecules. We obtain a joint model for the total energy and interatomic forces that follows fundamental quantum-chemical principles. This includes rotationally invariant energy predictions and a smooth, differentiable potential energy surface. Our architecture achieves state-of-the-art performance for benchmarks of equilibrium molecules and molecular dynamics trajectories. Finally, we introduce a more challenging benchmark with chemical and structural variations that suggests the path for further work.

Prediction of amino acid side chain conformation using a deep neural network Machine Learning

A deep neural network based architecture was constructed to predict amino acid side chain conformation with unprecedented accuracy. Amino acid side chain conformation prediction is essential for protein homology modeling and protein design. Current widely-adopted methods use physics-based energy functions to evaluate side chain conformation. Here, using a deep neural network architecture without physics-based assumptions, we have demonstrated that side chain conformation prediction accuracy can be improved by more than 25%, especially for aromatic residues compared with current standard methods. More strikingly, the prediction method presented here is robust enough to identify individual conformational outliers from high resolution structures in a protein data bank without providing its structural factors. We envisage that our amino acid side chain predictor could be used as a quality check step for future protein structure model validation and many other potential applications such as side chain assignment in Cryo-electron microscopy, crystallography model auto-building, protein folding and small molecule ligand docking.

How to use machine learning to identify "good" customers vs "bad" customers - BDO Canada - IT Solutions


Good profitable customers rarely become unprofitable. It is more likely that they were unprofitable from the onset. Determining an approach to define customer value can be a complex decision. Traditionally, we use gross margin in identifying good and bad customers. For example, if your overhead costs are 25% of gross revenue, a good customer is anyone with a gross margin over 25%.

Carbon Black warns that artificial intelligence is not a silver bullet


The research, which Carbon Black says looked "Beyond the Hype" found that the roles of AI and ML in preventing cyber-attacks have been met with both hope and skepticism. The vast majority (93 percent) of the 400 security researchers interviewed while conducting this research said non-malware attacks pose more of a business risk than commodity malware attacks, and more importantly that these are often not stopped by traditional anti-virus offerings. Mike Viscuso, co-founder and CTO of Carbon Black told SC Media UK: "Researchers have reported seeing an increase in the number, and sophistication, of non-malware attacks. These attacks are specifically designed to evade file-based prevention mechanisms and leverage native operating system tools to keep attackers under the radar." One respondent explained: "Most users seem to be familiar with the idea that their computer or network may have accidentally become infected with a virus, but rarely consider a person who is actually attacking them in a more proactive and targeted manner."