Industrial Machinery


The next horizon for industrial manufacturing: Adopting disruptive digital technologies in making and delivering

#artificialintelligence

In the past few years, advanced industrial companies have made solid progress in improving productivity along the manufacturing value chain. In the US, for instance, the productivity of industrial workers has increased by 47 percent over the past 20 years. But the traditional levers that have driven these gains, such as lean operations, Six Sigma, and total quality management, are starting to run out of steam, and the incremental benefits they deliver are declining. As a result, leading companies are now looking to disruptive technologies for their next horizon of performance improvement. Many are starting to experiment with technologies such as machine-to-machine digital connectivity (the Industrial Internet of Things, or IIoT), artificial intelligence (AI), machine learning, advanced automation, robotics, and additive manufacturing.


Autonomous energy grids project envisions 'self-driving power system'

#artificialintelligence

A team at the US National Renewable Energy Laboratory (NREL) is working on autonomous energy grid (AEG) technology to ensure the electricity grid of the future can manage a growing base of intelligent energy devices, variable renewable energy, and advanced controls. "The future grid will be much more distributed too complex to control with today's techniques and technologies," said Benjamin Kroposki, director of NREL's Power Systems Engineering Center. "We need a path to get there--to reach the potential of all these new technologies integrating into the power system." The AEG effort envisions a self-driving power system - a very "aware" network of technologies and distributed controls that work together to efficiently match bi-directional energy supply to energy demand. This is a hard pivot from today's system, in which centralized control is used to manage one-way electricity flows to consumers along power lines that spoke out from central generators.


Tips for building a cost-effective AI infrastructure on IBM Power Systems - IBM Systems Lab Services Worldwide Blog

#artificialintelligence

Many organizations have started to build infrastructure for AI using IBM Power Systems, which leverage NVIDIA GPUs. Enterprises often focus on building AI solutions that provide high availability, automated orchestration and the like, which can add to the cost of the solution. Educational institutions and research organizations, however, often look for solutions that give them more flexibility in utilizing underlying resources optimally for their machine learning and deep learning (ML/DL) workloads, and with much lower costs. Researchers may require running parallel DL training jobs using different AI runtimes. Professors may require allocating and deallocating AI runtimes to multiple students for AI assignments.


Network Based Pricing for 3D Printing Services in Two-Sided Manufacturing-as-a-Service Marketplace

arXiv.org Machine Learning

This paper presents approaches to determine a network based pricing for 3D printing services in the context of a two-sided manufacturing-as-a-service marketplace. The intent is to provide cost analytics to enable service bureaus to better compete in the market by moving away from setting ad-hoc and subjective prices. A data mining approach with machine learning methods is used to estimate a price range based on the profile characteristics of 3D printing service suppliers. The model considers factors such as supplier experience, supplier capabilities, customer reviews and ratings from past orders, and scale of operations among others to estimate a price range for suppliers' services. Data was gathered from existing marketplace websites, which was then used to train and test the model. The model demonstrates an accuracy of 65% for US based suppliers and 59% for Europe based suppliers to classify a supplier's 3D Printer listing in one of the seven price categories. The improvement over baseline accuracy of 25% demonstrates that machine learning based methods are promising for network based pricing in manufacturing marketplaces. Conventional methodologies for pricing services through activity based costing are inefficient in strategically pricing 3D printing service offering in a connected marketplace. As opposed to arbitrarily determining prices, this work proposes an approach to determine prices through data mining methods to estimate competitive prices. Such tools can be built into online marketplaces to help independent service bureaus to determine service price rates.


Spaghetti Detective: Monitor Your 3D Printer with Machine Learning

#artificialintelligence

Into 3D printing world, "spaghetti" is the common term for the tangled mess of stringy plastic that's often the result of a failed print. Fear of their print bed turning into a hot plate of PLA spaghetti is enough to keep many users from leaving their machines operating overnight or while they're out of the house. The Spaghetti Detective, an open source project that lets machine learning take over when you can't sit watching the printer all day, might help those users to overcome that fear. This software monitors your prints for you, and notify you if it detects a possible print failure. The Spaghetti Detective is a plugin for OctoPrint, which runs on a Raspberry Pi, and gives you the ability to remotely control your 3D printer and view a live video feed as it runs.


Region of Attraction for Power Systems using Gaussian Process and Converse Lyapunov Function -- Part I: Theoretical Framework and Off-line Study

arXiv.org Machine Learning

This paper introduces a novel framework to construct the region of attraction (ROA) of a power system centered around a stable equilibrium by using stable state trajectories of system dynamics. Most existing works on estimating ROA rely on analytical Lyapunov functions, which are subject to two limitations: the analytic Lyapunov functions may not be always readily available, and the resulting ROA may be overly conservative. This work overcomes these two limitations by leveraging the converse Lyapunov theorem in control theory to eliminate the need of an analytic Lyapunov function and learning the unknown Lyapunov function with the Gaussian Process (GP) approach. In addition, a Gaussian Process Upper Confidence Bound (GP-UCB) based sampling algorithm is designed to reconcile the trade-off between the exploitation for enlarging the ROA and the exploration for reducing the uncertainty of sampling region. Within the constructed ROA, it is guaranteed in probability that the system state will converge to the stable equilibrium with a confidence level. Numerical simulations are also conducted to validate the assessment approach for the ROA of the single machine infinite bus system and the New England $39$-bus system. Numerical results demonstrate that our approach can significantly enlarge the estimated ROA compared to that of the analytic Lyapunov counterpart.


A 3-D printer powered by machine vision and artificial intelligence

#artificialintelligence

Objects made with 3-D printing can be lighter, stronger, and more complex than those produced through traditional manufacturing methods. But several technical challenges must be overcome before 3-D printing transforms the production of most devices. Commercially available printers generally offer only high speed, high precision, or high-quality materials. Rarely do they offer all three, limiting their usefulness as a manufacturing tool. Today, 3-D printing is used mainly for prototyping and low-volume production of specialized parts.


Mass production 3D printing? It's coming, and it's a big deal

ZDNet

Markforged, a company that makes industrial 3D printers, today announced that it has closed an $82 million Series D round. "Markforged set out to change the pace of human innovation by enabling engineers, inventors and manufacturers to print industrial-grade parts at a fraction of the time and cost of traditional methods," says Greg Mark, CEO and co-founder. "We're very excited to have Summit join us as we help accelerate the next industrial revolution with broadly accessible and reliable 3D printing." That's a lofty aspiration, but it might not be far off. The $12 trillion manufacturing sector is undergoing a transformation thanks to flexible automation technologies, including autonomous mobile robots and collaborative robotics.


How AI and robotics are going to shape the workplace

#artificialintelligence

Most jobs in the future don't exist yet beyond a spark of the imagination – that's what nearly half of young people believe. The future will be full of outlandish problems no one has even thought of – but there will be more need than ever for people with the critical and creative-thinking skills to tackle them. "We already know centennials are well aware that industries are undergoing exponential change," says Professor Nick Colosimo, principal technologist at BAE Systems. Some 47 per cent of young people expect to work in industries that don't yet exist, research by BAE Systems shows, while nearly two thirds (63 per cent) think that job roles will be more exciting than those of their parents' era. Advances in areas such as artificial intelligence (AI), 3D printing and nanofabrication, automation and robotics will inevitably reshape the job market.


IBM Rolls Out Big Customers At Think 2019 Using AI, ML, DL On Power Systems

#artificialintelligence

Morgan Stanley was another customer that showcased its work with IBM Power Systems at the event. Morgan Stanley executive director Marcelo Labre speaking with IBM's Sumit Gupta says that IBM Power Systems' computing power and AI-readiness is enabling the organization to explore new AI/ML use cases in finance, with the overall goal of increased efficiency and alignment with customer needs. For example, Morgan Stanley's Labre elaborated at THINK 2019 on how his organization is utilizing AI to challenge outdated risk models. Using AI to improve risk models is a common theme I hear over and over in the industry. You truly need big data to do this well and Power fits the bill.