Chess
An Analysis of Elo Rating Systems via Markov Chains
We present a theoretical analysis of the Elo rating system, a popular method for ranking skills of players in an online setting. In particular, we study Elo under the Bradley-Terry-Luce model and, using techniques from Markov chain theory, show that Elo learns the model parameters at a rate competitive with the state of the art. We apply our results to the problem of efficient tournament design and discuss a connection with the fastest-mixing Markov chain problem.
Prediction-Powered Ranking of Large Language Models
Large language models are often ranked according to their level of alignment with human preferences--a model is better than other models if its outputs are more frequently preferred by humans. One of the popular ways to elicit human preferences utilizes pairwise comparisons between the outputs provided by different models to the same inputs. However, since gathering pairwise comparisons by humans is costly and time-consuming, it has become a common practice to gather pairwise comparisons by a strong large language model--a model strongly aligned with human preferences. Surprisingly, practitioners cannot currently measure the uncertainty that any mismatch between human and model preferences may introduce in the constructed rankings. In this work, we develop a statistical framework to bridge this gap. Given a (small) set of pairwise comparisons by humans and a large set of pairwise comparisons by a model, our framework provides a rank-set--a set of possible ranking positions--for each of the models under comparison. Moreover, it guarantees that, with a probability greater than or equal to a user-specified value, the rank-sets cover the true ranking consistent with the distribution of human pairwise preferences asymptotically. Using pairwise comparisons made by humans in the LMSYS Chatbot Arena platform and pairwise comparisons made by three strong large language models, we empirically demonstrate the effectivity of our framework and show that the rank-sets constructed using only pairwise comparisons by the strong large language models are often inconsistent with (the distribution of) human pairwise preferences.
Elo Uncovered: Robustness and Best Practices in Language Model Evaluation
In Natural Language Processing (NLP), the Elo rating system, originally designed for ranking players in dynamic games such as chess, is increasingly being used to evaluate Large Language Models (LLMs) through "A vs B" paired comparisons. However, while popular, the system's suitability for assessing entities with constant skill levels, such as LLMs, remains relatively unexplored. We study two fundamental axioms that evaluation methods should adhere to: reliability and transitivity. We conduct an extensive evaluation of Elo behavior across simulated and real-world scenarios, demonstrating that individual Elo computations can exhibit significant volatility. We show that both axioms are not always satisfied, raising questions about the reliability of current comparative evaluations of LLMs. If the current use of Elo scores is intended to substitute the costly head-to-head comparison of LLMs, it is crucial to ensure the ranking is as robust as possible. Guided by the axioms, our findings offer concrete guidelines for enhancing the reliability of LLM evaluation methods, suggesting a need for reassessment of existing comparative approaches.
Transcendence: Generative Models Can Outperform The Experts That Train Them
Generative models are trained with the simple objective of imitating the conditional probability distribution induced by the data they are trained on. Therefore, when trained on data generated by humans, we may not expect the artificial model to outperform the humans on their original objectives. In this work, we study the phenomenon of transcendence: when a generative model achieves capabilities that surpass the abilities of the experts generating its data. We demonstrate transcendence by training an autoregressive transformer to play chess from game transcripts, and show that the trained model can sometimes achieve better performance than all players in the dataset.
Measuring Progress in Dictionary Learning for Language Model Interpretability with Board Game Models
What latent features are encoded in language model (LM) representations? Recent work on training sparse autoencoders (SAEs) to disentangle interpretable features in LM representations has shown significant promise. However, evaluating the quality of these SAEs is difficult because we lack a ground-truth collection of interpretable features that we expect good SAEs to recover. We thus propose to measure progress in interpretable dictionary learning by working in the setting of LMs trained on chess and Othello transcripts. These settings carry natural collections of interpretable features--for example, "there is a knight on F3"-- which we leverage into supervised metrics for SAE quality. To guide progress in interpretable dictionary learning, we introduce a new SAE training technique, p-annealing, which improves performance on prior unsupervised metrics as well as our new metrics.
Amortized Planning with Large-Scale Transformers: A Case Study on Chess Grรฉgoire Delรฉtang 1
This paper uses chess, a landmark planning problem in AI, to assess transformers' performance on a planning task where memorization is futile -- even at a large scale. To this end, we release ChessBench, a large-scale benchmark dataset of 10 million chess games with legal move and value annotations (15 billion data points) provided by Stockfish 16, the state-of-the-art chess engine. We train transformers with up to 270 million parameters on ChessBench via supervised learning and perform extensive ablations to assess the impact of dataset size, model size, architecture type, and different prediction targets (state-values, action-values, and behavioral cloning). Our largest models learn to predict action-values for novel boards quite accurately, implying highly non-trivial generalization. Despite performing no explicit search, our resulting chess policy solves challenging chess puzzles and achieves a surprisingly strong Lichess blitz Elo of 2895 against humans (grandmaster level). We also compare to Leela Chess Zero and AlphaZero (trained without supervision via self-play) with and without search. We show that, although a remarkably good approximation of Stockfish's search-based algorithm can be distilled into large-scale transformers via supervised learning, perfect distillation is still beyond reach, thus making ChessBench well-suited for future research.
Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization
While generalization over tasks from easy to hard is crucial to profile language models (LLMs), the datasets with fine-grained difficulty annotations for each problem across a broad range of complexity are still missing. Aiming to address this limitation, we present Easy2Hard-Bench, a consistently formatted collection of 6 benchmark datasets spanning various domains, such as mathematics and programming problems, chess puzzles, and reasoning questions. Each problem within these datasets is annotated with numerical difficulty scores. To systematically estimate problem difficulties, we collect abundant performance data on attempts to each problem by humans in the real world or LLMs on the prominent leaderboard. Leveraging the rich performance data, we apply well-established difficulty ranking systems, such as Item Response Theory (IRT) and Glicko-2 models, to uniformly assign numerical difficulty scores to problems. Moreover, datasets in Easy2Hard-Bench distinguish themselves from previous collections by a higher proportion of challenging problems. Through extensive experiments with six stateof-the-art LLMs, we provide a comprehensive analysis of their performance and generalization capabilities across varying levels of difficulty, with the aim of inspiring future research in LLM generalization.
Evidence of Learned Look-Ahead in a Chess-Playing Neural Network
Do neural networks learn to implement algorithms such as look-ahead or search "in the wild"? Or do they rely purely on collections of simple heuristics? We present evidence of learned look-ahead in the policy and value network of Leela Chess Zero, the currently strongest deep neural chess engine. We find that Leela internally represents future optimal moves and that these representations are crucial for its final output in certain board states. Concretely, we exploit the fact that Leela is a transformer that treats every chessboard square like a token in language models, and give three lines of evidence: (1) activations on certain squares of future moves are unusually important causally; (2) we find attention heads that move important information "forward and backward in time," e.g., from squares of future moves to squares of earlier ones; and (3) we train a simple probe that can predict the optimal move 2 turns ahead with 92% accuracy (in board states where Leela finds a single best line). These findings are clear evidence of learned look-ahead in neural networks and might be a step towards a better understanding of their capabilities.
Maia-2: A Unified Model for Human-AI Alignment in Chess
There are an increasing number of domains in which artificial intelligence (AI) systems both surpass human ability and accurately model human behavior. This introduces the possibility of algorithmically-informed teaching in these domains through more relatable AI partners and deeper insights into human decision-making. Critical to achieving this goal, however, is coherently modeling human behavior at various skill levels. Chess is an ideal model system for conducting research into this kind of human-AI alignment, with its rich history as a pivotal testbed for AI research, mature superhuman AI systems like AlphaZero, and precise measurements of skill via chess rating systems. Previous work in modeling human decision-making in chess uses completely independent models to capture human style at different skill levels, meaning they lack coherence in their ability to adapt to the full spectrum of human improvement and are ultimately limited in their effectiveness as AI partners and teaching tools. In this work, we propose a unified modeling approach for human-AI alignment in chess that coherently captures human style across different skill levels and directly captures how people improve. Recognizing the complex, non-linear nature of human learning, we introduce a skill-aware attention mechanism to dynamically integrate players' strengths with encoded chess positions, enabling our model to be sensitive to evolving player skill. Our experimental results demonstrate that this unified framework significantly enhances the alignment between AI and human players across a diverse range of expertise levels, paving the way for deeper insights into human decision-making and AI-guided teaching tools. Our implementation is available here.