Goto

Collaborating Authors

 Information Technology


Mean field for Markov Decision Processes: from Discrete to Continuous Optimization

arXiv.org Artificial Intelligence

We study the convergence of Markov Decision Processes made of a large number of objects to optimization problems on ordinary differential equations (ODE). We show that the optimal reward of such a Markov Decision Process, satisfying a Bellman equation, converges to the solution of a continuous Hamilton-Jacobi-Bellman (HJB) equation based on the mean field approximation of the Markov Decision Process. We give bounds on the difference of the rewards, and a constructive algorithm for deriving an approximating solution to the Markov Decision Process from a solution of the HJB equations. We illustrate the method on three examples pertaining respectively to investment strategies, population dynamics control and scheduling in queues are developed. They are used to illustrate and justify the construction of the controlled ODE and to show the gain obtained by solving a continuous HJB equation rather than a large discrete Bellman equation.


Happy Movie: A Group Recommender Application in Facebook

AAAI Conferences

In this paper we introduce our recommender Happy Movie, a Facebook application for movie recommendation to groups. This system exploits information about the social relationships and behaviour of the users to provide better recommendations. Our previous works have shown that social factors improve the recommendation results. However it required many questionnaires to be filled for obtaining the social information, so we have moved to a social network environment where this information is easily available.


Building Integrated Opinion Delivery Environment

AAAI Conferences

We introduce a search engine and information retrieval system for providing access to opinion data. Natural language technology of generalization of syntactic parse trees is introduced as a similarity measure between subjects of textual opinions to link them on the fly. Information extraction algorithm for automatic summarization of web pages in the format of Google sponsored links is presented. We outline the usability of the implemented system, integrated opinion delivery environment (IODE).


Geotagging Tweets Using Their Content

AAAI Conferences

Harnessing rich, but unstructured information on social networks in real-time and showing it to relevant audience based on its geographic location is a major challenge. The system developed, TwitterTagger, geotags tweets and shows them to users based on their current physical location. Experimental validation shows a performance improvement of three orders by TwitterTagger compared to that of the baseline model.


Supporting End-User Authoring of Alternate Reality Games with Cross-Location Compatibility

AAAI Conferences

A typical ARG consists of a Puppet Master who issues that have historically prevented ARGs from designs the game and informs players of the unfolding of mainstream adoption. A generic game engine runs on a the story. With the advent of smart-phones with GPS, geo-location enabled mobile device enables users to play ARGs progressively make use of the actual world as the any game modeled as a dependency graph of game content.


Generating Similar Graphs From Spherical Features

arXiv.org Machine Learning

We propose a novel model for generating graphs similar to a given example graph. Unlike standard approaches that compute features of graphs in Euclidean space, our approach obtains features on a surface of a hypersphere. We then utilize a von Mises-Fisher distribution, an exponential family distribution on the surface of a hypersphere, to define a model over possible feature values. While our approach bears similarity to a popular exponential random graph model (ERGM), unlike ERGMs, it does not suffer from degeneracy, a situation when a significant probability mass is placed on unrealistic graphs. We propose a parameter estimation approach for our model, and a procedure for drawing samples from the distribution. We evaluate the performance of our approach both on the small domain of all 8-node graphs as well as larger real-world social networks.


All-at-once Optimization for Coupled Matrix and Tensor Factorizations

arXiv.org Machine Learning

Joint analysis of data from multiple sources has the potential to improve our understanding of the underlying structures in complex data sets. For instance, in restaurant recommendation systems, recommendations can be based on rating histories of customers. In addition to rating histories, customers' social networks (e.g., Facebook friendships) and restaurant categories information (e.g., Thai or Italian) can also be used to make better recommendations. The task of fusing data, however, is challenging since data sets can be incomplete and heterogeneous, i.e., data consist of both matrices, e.g., the person by person social network matrix or the restaurant by category matrix, and higher-order tensors, e.g., the "ratings" tensor of the form restaurant by meal by person. In this paper, we are particularly interested in fusing data sets with the goal of capturing their underlying latent structures. We formulate this problem as a coupled matrix and tensor factorization (CMTF) problem where heterogeneous data sets are modeled by fitting outer-product models to higher-order tensors and matrices in a coupled manner. Unlike traditional approaches solving this problem using alternating algorithms, we propose an all-at-once optimization approach called CMTF-OPT (CMTF-OPTimization), which is a gradient-based optimization approach for joint analysis of matrices and higher-order tensors. We also extend the algorithm to handle coupled incomplete data sets. Using numerical experiments, we demonstrate that the proposed all-at-once approach is more accurate than the alternating least squares approach.


Stochastic blockmodels with growing number of classes

arXiv.org Machine Learning

We present asymptotic and finite-sample results on the use of stochastic blockmodels for the analysis of network data. We show that the fraction of misclassified network nodes converges in probability to zero under maximum likelihood fitting when the number of classes is allowed to grow as the root of the network size and the average network degree grows at least poly-logarithmically in this size. We also establish finite-sample confidence bounds on maximum-likelihood blockmodel parameter estimates from data comprising independent Bernoulli random variates; these results hold uniformly over class assignment. We provide simulations verifying the conditions sufficient for our results, and conclude by fitting a logit parameterization of a stochastic blockmodel with covariates to a network data example comprising a collection of Facebook profiles, resulting in block estimates that reveal residual structure.


Notes on a New Philosophy of Empirical Science

arXiv.org Machine Learning

This book presents a methodology and philosophy of empirical science based on large scale lossless data compression. In this view a theory is scientific if it can be used to build a data compression program, and it is valuable if it can compress a standard benchmark database to a small size, taking into account the length of the compressor itself. This methodology therefore includes an Occam principle as well as a solution to the problem of demarcation. Because of the fundamental difficulty of lossless compression, this type of research must be empirical in nature: compression can only be achieved by discovering and characterizing empirical regularities in the data. Because of this, the philosophy provides a way to reformulate fields such as computer vision and computational linguistics as empirical sciences: the former by attempting to compress databases of natural images, the latter by attempting to compress large text databases. The book argues that the rigor and objectivity of the compression principle should set the stage for systematic progress in these fields. The argument is especially strong in the context of computer vision, which is plagued by chronic problems of evaluation. The book also considers the field of machine learning. Here the traditional approach requires that the models proposed to solve learning problems be extremely simple, in order to avoid overfitting. However, the world may contain intrinsically complex phenomena, which would require complex models to understand. The compression philosophy can justify complex models because of the large quantity of data being modeled (if the target database is 100 Gb, it is easy to justify a 10 Mb model). The complex models and abstractions learned on the basis of the raw data (images, language, etc) can then be reused to solve any specific learning problem, such as face recognition or machine translation.


Compressive Network Analysis

arXiv.org Machine Learning

Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets.