Goto

Collaborating Authors

 Information Technology


Understanding the Interaction between Interests, Conversations and Friendships in Facebook

arXiv.org Machine Learning

In this paper, we explore salient questions about user interests, conversations and friendships in the Facebook social network, using a novel latent space model that integrates several data types. A key challenge of studying Facebook's data is the wide range of data modalities such as text, network links, and categorical labels. Our latent space model seamlessly combines all three data modalities over millions of users, allowing us to study the interplay between user friendships, interests, and higher-order network-wide social trends on Facebook. The recovered insights not only answer our initial questions, but also reveal surprising facts about user interests in the context of Facebook's ecosystem. We also confirm that our results are significant with respect to evidential information from the study subjects.


Asynchronous Decentralized Algorithm for Space-Time Cooperative Pathfinding

arXiv.org Artificial Intelligence

Cooperative pathfinding is a multi-agent path planning problem where a group of vehicles searches for a corresponding set of non-conflicting space-time trajectories. Many of the practical methods for centralized solving of cooperative pathfinding problems are based on the prioritized planning strategy. However, in some domains (e.g., multi-robot teams of unmanned aerial vehicles, autonomous underwater vehicles, or unmanned ground vehicles) a decentralized approach may be more desirable than a centralized one due to communication limitations imposed by the domain and/or privacy concerns. In this paper we present an asynchronous decentralized variant of prioritized planning ADPP and its interruptible version IADPP. The algorithm exploits the inherent parallelism of distributed systems and allows for a speed up of the computation process. Unlike the synchronized planning approaches, the algorithm allows an agent to react to updates about other agents' paths immediately and invoke its local spatio-temporal path planner to find the best trajectory, as response to the other agents' choices. We provide a proof of correctness of the algorithms and experimentally evaluate them on synthetic domains.


Loopy Belief Propagation as a Basis for Communication in Sensor Networks

arXiv.org Artificial Intelligence

Sensor networks are an exciting new kind of computer system. Consisting of a large number of tiny, cheap computational devices physically distributed in an environment, they gather and process data about the environment in real time. One of the central questions in sensor networks is what to do with the data, i.e., how to reason with it and how to communicate it. This paper argues that the lessons of the UAI community, in particular that one should produce and communicate beliefs rather than raw sensor values, are highly relevant to sensor networks. We contend that loopy belief propagation is particularly well suited to communicating beliefs in sensor networks, due to its compact implementation and distributed nature. We investigate the ability of loopy belief propagation to function under the stressful conditions likely to prevail in sensor networks. Our experiments show that it performs well and degrades gracefully. It converges to appropriate beliefs even in highly asynchronous settings where some nodes communicate far less frequently than others; it continues to function if some nodes fail to participate in the propagation process; and it can track changes in the environment that occur while beliefs are propagating. As a result, we believe that sensor networks present an important application opportunity for UAI.


Matrix reconstruction with the local max norm

arXiv.org Machine Learning

We introduce a new family of matrix norms, the "local max" norms, generalizing existing methods such as the max norm, the trace norm (nuclear norm), and the weighted or smoothed weighted trace norms, which have been extensively used in the literature as regularizers for matrix reconstruction problems. We show that this new family can be used to interpolate between the (weighted or unweighted) trace norm and the more conservative max norm. We test this interpolation on simulated data and on the large-scale Netflix and MovieLens ratings data, and find improved accuracy relative to the existing matrix norms. We also provide theoretical results showing learning guarantees for some of the new norms.


Response Aware Model-Based Collaborative Filtering

arXiv.org Machine Learning

Previous work on recommender systems mainly focus on fitting the ratings provided by users. However, the response patterns, i.e., some items are rated while others not, are generally ignored. We argue that failing to observe such response patterns can lead to biased parameter estimation and sub-optimal model performance. Although several pieces of work have tried to model users' response patterns, they miss the effectiveness and interpretability of the successful matrix factorization collaborative filtering approaches. To bridge the gap, in this paper, we unify explicit response models and PMF to establish the Response Aware Probabilistic Matrix Factorization (RAPMF) framework. We show that RAPMF subsumes PMF as a special case. Empirically we demonstrate the merits of RAPMF from various aspects.


Fast Graph Construction Using Auction Algorithm

arXiv.org Machine Learning

In practical machine learning systems, graph based data representation has been widely used in various learning paradigms, ranging from unsupervised clustering to supervised classification. Besides those applications with natural graph or network structure data, such as social network analysis and relational learning, many other applications often involve a critical step in converting data vectors to an adjacency graph. In particular, a sparse subgraph extracted from the original graph is often required due to both theoretic and practical needs. Previous study clearly shows that the performance of different learning algorithms, e.g., clustering and classification, benefits from such sparse subgraphs with balanced node connectivity. However, the existing graph construction methods are either computationally expensive or with unsatisfactory performance. In this paper, we utilize a scalable method called auction algorithm and its parallel extension to recover a sparse yet nearly balanced subgraph with significantly reduced computational cost. Empirical study and comparison with the state-ofart approaches clearly demonstrate the superiority of the proposed method in both efficiency and accuracy.


Leveraging Side Observations in Stochastic Bandits

arXiv.org Machine Learning

This paper considers stochastic bandits with side observations, a model that accounts for both the exploration/exploitation dilemma and relationships between arms. In this setting, after pulling an arm i, the decision maker also observes the rewards for some other actions related to i. We will see that this model is suited to content recommendation in social networks, where users' reactions may be endorsed or not by their friends. We provide efficient algorithms based on upper confidence bounds (UCBs) to leverage this additional information and derive new bounds improving on standard regret guarantees. We also evaluate these policies in the context of movie recommendation in social networks: experiments on real datasets show substantial learning rate speedups ranging from 2.2x to 14x on dense networks.


Spectral Estimation of Conditional Random Graph Models for Large-Scale Network Data

arXiv.org Machine Learning

Generative models for graphs have been typically committed to strong prior assumptions concerning the form of the modeled distributions. Moreover, the vast majority of currently available models are either only suitable for characterizing some particular network properties (such as degree distribution or clustering coefficient), or they are aimed at estimating joint probability distributions, which is often intractable in large-scale networks. In this paper, we first propose a novel network statistic, based on the Laplacian spectrum of graphs, which allows to dispense with any parametric assumption concerning the modeled network properties. Second, we use the defined statistic to develop the Fiedler random graph model, switching the focus from the estimation of joint probability distributions to a more tractable conditional estimation setting. After analyzing the dependence structure characterizing Fiedler random graphs, we evaluate them experimentally in edge prediction over several real-world networks, showing that they allow to reach a much higher prediction accuracy than various alternative statistical models.


Local optima networks and the performance of iterated local search

arXiv.org Artificial Intelligence

Local Optima Networks (LONs) have been recently proposed as an alternative model of combinatorial fitness landscapes. The model compresses the information given by the whole search space into a smaller mathematical object that is the graph having as vertices the local optima and as edges the possible weighted transitions between them. A new set of metrics can be derived from this model that capture the distribution and connectivity of the local optima in the underlying configuration space. This paper departs from the descriptive analysis of local optima networks, and actively studies the correlation between network features and the performance of a local search heuristic. The NK family of landscapes and the Iterated Local Search metaheuristic are considered. With a statistically-sound approach based on multiple linear regression, it is shown that some LONs' features strongly influence and can even partly predict the performance of a heuristic search algorithm. This study validates the expressive power of LONs as a model of combinatorial fitness landscapes.


Inferring the Underlying Structure of Information Cascades

arXiv.org Artificial Intelligence

In social networks, information and influence diffuse among users as cascades. While the importance of studying cascades has been recognized in various applications, it is difficult to observe the complete structure of cascades in practice. Moreover, much less is known on how to infer cascades based on partial observations. In this paper we study the cascade inference problem following the independent cascade model, and provide a full treatment from complexity to algorithms: (a) We propose the idea of consistent trees as the inferred structures for cascades; these trees connect source nodes and observed nodes with paths satisfying the constraints from the observed temporal information. (b) We introduce metrics to measure the likelihood of consistent trees as inferred cascades, as well as several optimization problems for finding them. (c) We show that the decision problems for consistent trees are in general NP-complete, and that the optimization problems are hard to approximate. (d) We provide approximation algorithms with performance guarantees on the quality of the inferred cascades, as well as heuristics. We experimentally verify the efficiency and effectiveness of our inference algorithms, using real and synthetic data.