Goto

Collaborating Authors

 Information Technology


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.


Scalable Bayesian Inference for Excitatory Point Process Networks

arXiv.org Machine Learning

Networks capture our intuition about relationships in the world. They describe the friendships between Facebook users, interactions in financial markets, and synapses connecting neurons in the brain. These networks are richly structured with cliques of friends, sectors of stocks, and a smorgasbord of cell types that govern how neurons connect. Some networks, like social network friendships, can be directly observed, but in many cases we only have an indirect view of the network through the actions of its constituents and an understanding of how the network mediates that activity. In this work, we focus on the problem of latent network discovery in the case where the observable activity takes the form of a mutually-excitatory point process known as a Hawkes process. We build on previous work that has taken a Bayesian approach to this problem, specifying prior distributions over the latent network structure and a likelihood of observed activity given this network. We extend this work by proposing a discrete-time formulation and developing a computationally efficient stochastic variational inference (SVI) algorithm that allows us to scale the approach to long sequences of observations. We demonstrate our algorithm on the calcium imaging data used in the Chalearn neural connectomics challenge.


Sparse Approximate Inference for Spatio-Temporal Point Process Models

arXiv.org Machine Learning

Spatio-temporal point process models play a central role in the analysis of spatially distributed systems in several disciplines. Yet, scalable inference remains computa- tionally challenging both due to the high resolution modelling generally required and the analytically intractable likelihood function. Here, we exploit the sparsity structure typical of (spatially) discretised log-Gaussian Cox process models by using approximate message-passing algorithms. The proposed algorithms scale well with the state dimension and the length of the temporal horizon with moderate loss in distributional accuracy. They hence provide a flexible and faster alternative to both non-linear filtering-smoothing type algorithms and to approaches that implement the Laplace method or expectation propagation on (block) sparse latent Gaussian models. We infer the parameters of the latent Gaussian model using a structured variational Bayes approach. We demonstrate the proposed framework on simulation studies with both Gaussian and point-process observations and use it to reconstruct the conflict intensity and dynamics in Afghanistan from the WikiLeaks Afghan War Diary.


Role of normalization in spectral clustering for stochastic blockmodels

arXiv.org Machine Learning

Spectral clustering is a technique that clusters elements using the top few eigenvectors of their (possibly normalized) similarity matrix. The quality of spectral clustering is closely tied to the convergence properties of these principal eigenvectors. This rate of convergence has been shown to be identical for both the normalized and unnormalized variants in recent random matrix theory literature. However, normalization for spectral clustering is commonly believed to be beneficial [Stat. Comput. 17 (2007) 395-416]. Indeed, our experiments show that normalization improves prediction accuracy. In this paper, for the popular stochastic blockmodel, we theoretically show that normalization shrinks the spread of points in a class by a constant fraction under a broad parameter regime. As a byproduct of our work, we also obtain sharp deviation bounds of empirical principal eigenvalues of graphs generated from a stochastic blockmodel.


Joint community and anomaly tracking in dynamic networks

arXiv.org Machine Learning

Most real-world networks exhibit community structure, a phenomenon characterized by existence of node clusters whose intra-edge connectivity is stronger than edge connectivities between nodes belonging to different clusters. In addition to facilitating a better understanding of network behavior, community detection finds many practical applications in diverse settings. Communities in online social networks are indicative of shared functional roles, or affiliation to a common socio-economic status, the knowledge of which is vital for targeted advertisement. In buyer-seller networks, community detection facilitates better product recommendations. Unfortunately, reliability of community assignments is hindered by anomalous user behavior often observed as unfair self-promotion, or "fake" highly-connected accounts created to promote fraud. The present paper advocates a novel approach for jointly tracking communities while detecting such anomalous nodes in time-varying networks. By postulating edge creation as the result of mutual community participation by node pairs, a dynamic factor model with anomalous memberships captured through a sparse outlier matrix is put forth. Efficient tracking algorithms suitable for both online and decentralized operation are developed. Experiments conducted on both synthetic and real network time series successfully unveil underlying communities and anomalous nodes.