Goto

Collaborating Authors

 Robotics & Automation


RA-PbRL: Provably Efficient Risk-Aware Preference-Based Reinforcement Learning

Neural Information Processing Systems

Reinforcement Learning from Human Feedback (RLHF) has recently surged in popularity, particularly for aligning large language models and other AI systems with human intentions. At its core, RLHF can be viewed as a specialized instance of Preference-based Reinforcement Learning (PbRL), where the preferences specifically originate from human judgments rather than arbitrary evaluators. Despite this connection, most existing approaches in both RLHF and PbRL primarily focus on optimizing a mean reward objective, neglecting scenarios that necessitate risk-awareness, such as AI safety, healthcare, and autonomous driving. These scenarios often operate under a one-episode-reward setting, which makes conventional risk-sensitive objectives inapplicable. To address this, we explore and prove the applicability of two risk-aware objectives to PbRL: nested and static quantile risk objectives. We also introduce Risk-Aware-PbRL (RA-PbRL), an algorithm designed to optimize both nested and static objectives. Additionally, we provide a theoretical analysis of the regret upper bounds, demonstrating that they are sublinear with respect to the number of episodes, and present empirical results to support our findings.


Tesla has begun testing driverless robotaxis in Austin ahead of June 12 launch, report says

Mashable

We now have a tentative launch date for Tesla's long-awaited robotaxi service in Austin, Texas: June 12. How long has Tesla been testing out these driverless vehicles that will soon be on the public streets of a major U.S. city? According to Tesla CEO Elon Musk, testing has been going on for "several days." "For the past several days, Tesla has been testing self-driving Model Y cars (no one in driver's seat) on Austin public streets with no incidents," Musk posted on his X account on Thursday. "A month ahead of schedule," Musk continued.


UAV3D: A Large-scale 3D Perception Benchmark for Unmanned Aerial Vehicles

Neural Information Processing Systems

Unmanned Aerial Vehicles (UAVs), equipped with cameras, are employed in numerous applications, including aerial photography, surveillance, and agriculture. In these applications, robust object detection and tracking are essential for the effective deployment of UAVs. However, existing benchmarks for UAV applications are mainly designed for traditional 2D perception tasks, restricting the development of real-world applications that require a 3D understanding of the environment. Furthermore, despite recent advancements in single-UAV perception, limited views of a single UAV platform significantly constrain its perception capabilities over long distances or in occluded areas. To address these challenges, we introduce UAV3D - a benchmark designed to advance research in both 3D and collaborative 3D perception tasks with UAVs. UAV3D comprises 1,000 scenes, each of which has 20 frames with fully annotated 3D bounding boxes on vehicles. We provide the benchmark for four 3D perception tasks: single-UAV 3D object detection, single-UAV object tracking, collaborative-UAV 3D object detection, and collaborative-UAV object tracking.


3dbb8b6b5576b85afb3037e9630812dc-Paper-Conference.pdf

Neural Information Processing Systems

The reliability of driving perception systems under unprecedented conditions is crucial for practical usage. Latest advancements have prompted increasing interest in multi-LiDAR perception. However, prevailing driving datasets predominantly utilize single-LiDAR systems and collect data devoid of adverse conditions, failing to capture the complexities of real-world environments accurately. Addressing these gaps, we proposed Place3D, a full-cycle pipeline that encompasses Li-DAR placement optimization, data generation, and downstream evaluations. Our framework makes three appealing contributions. 1) To identify the most effective configurations for multi-LiDAR systems, we introduce the Surrogate Metric of the Semantic Occupancy Grids (M-SOG) to evaluate LiDAR placement quality.



PRANK: motion Prediction based on RANKing

Neural Information Processing Systems

Predicting the motion of agents such as pedestrians or human-driven vehicles is one of the most critical problems in the autonomous driving domain. The overall safety of driving and the comfort of a passenger directly depend on its successful solution. The motion prediction problem also remains one of the most challenging problems in autonomous driving engineering, mainly due to high variance of the possible agent's future behavior given a situation. The two phenomena responsible for the said variance are the multimodality caused by the uncertainty of the agent's intent (e.g., turn right or move forward) and uncertainty in the realization of a given intent (e.g., which lane to turn into). To be useful within a real-time autonomous driving pipeline, a motion prediction system must provide efficient ways to describe and quantify this uncertainty, such as computing posterior modes and their probabilities or estimating density at the point corresponding to a given trajectory.


Zero Time Waste: Recycling Predictions in Early Exit Neural Networks

Neural Information Processing Systems

The problem of reducing processing time of large deep learning models is a fundamental challenge in many real-world applications. Early exit methods strive towards this goal by attaching additional Internal Classifiers (ICs) to intermediate layers of a neural network. ICs can quickly return predictions for easy examples and, as a result, reduce the average inference time of the whole model. However, if a particular IC does not decide to return an answer early, its predictions are discarded, with its computations effectively being wasted. To solve this issue, we introduce Zero Time Waste (ZTW), a novel approach in which each IC reuses predictions returned by its predecessors by (1) adding direct connections between ICs and (2) combining previous outputs in an ensemble-like manner. We conduct extensive experiments across various datasets and architectures to demonstrate that ZTW achieves a significantly better accuracy vs. inference time trade-off than other recently proposed early exit methods.


GraphMP: Graph Neural Network-based Motion Planning with Efficient Graph Search

Neural Information Processing Systems

Motion planning, which aims to find a high-quality collision-free path in the configuration space, is a fundamental task in robotic systems. Recently, learningbased motion planners, especially the graph neural network-powered, have shown promising planning performance. However, though the state-of-the-art GNN planner can efficiently extract and learn graph information, its inherent mechanism is not well suited for graph search process, hindering its further performance improvement. To address this challenge and fully unleash the potential of GNN in motion planning, this paper proposes GraphMP, a neural motion planner for both low and high-dimensional planning tasks. With the customized model architecture and training mechanism design, GraphMP can simultaneously perform efficient graph pattern extraction and graph search processing, leading to strong planning performance. Experiments on a variety of environments, ranging from 2D Maze to 14D dual KUKA robotic arm, show that our proposed GraphMP achieves significant improvement on path quality and planning speed over state-of-the-art learning-based and classical planners; while preserving competitive success rate.


There's a Very Simple Pattern to Elon Musk's Broken Promises

WIRED

My predictions about achieving full self-driving have been optimistic in the past,