Goto

Collaborating Authors

 Vaccines


Generalizing Bayesian Optimization with Decision-theoretic Entropies Willie Neiswanger

Neural Information Processing Systems

Bayesian optimization (BO) is a popular method for efficiently inferring optima of an expensive black-box function via a sequence of queries. Existing informationtheoretic BO procedures aim to make queries that most reduce the uncertainty about optima, where the uncertainty is captured by Shannon entropy. However, an optimal measure of uncertainty would, ideally, factor in how we intend to use the inferred quantity in some downstream procedure. In this paper, we instead consider a generalization of Shannon entropy from work in statistical decision theory [13, 39], which contains a broad class of uncertainty measures parameterized by a problem-specific loss function corresponding to a downstream task. We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures such as knowledge gradient, expected improvement, and entropy search. We then show how alternative choices for the loss yield a flexible family of acquisition functions that can be customized for use in novel optimization settings.


Local Interference: Removing Interference Bias in Semi-Parametric Causal Models

arXiv.org Machine Learning

Interference bias is a major impediment to identifying causal effects in real-world settings. For example, vaccination reduces the transmission of a virus in a population such that everyone benefits -- even those who are not treated. This is a source of bias that must be accounted for if one wants to learn the true effect of a vaccine on an individual's immune system. Previous approaches addressing interference bias require strong domain knowledge in the form of a graphical interaction network fully describing interference between units. Moreover, they place additional constraints on the form the interference can take, such as restricting to linear outcome models, and assuming that interference experienced by a unit does not depend on the unit's covariates. Our work addresses these shortcomings. We first provide and justify a novel definition of causal models with local interference. We prove that the True Average Causal Effect, a measure of causality where interference has been removed, can be identified in certain semi-parametric models satisfying this definition. These models allow for non-linearity, and also for interference to depend on a unit's covariates. An analytic estimand for the True Average Causal Effect is given in such settings. We further prove that the True Average Causal Effect cannot be identified in arbitrary models with local interference, showing that identification requires semi-parametric assumptions. Finally, we provide an empirical validation of our method on both simulated and real-world datasets.


Vaccine: Perturbation-aware Alignment for Large Language Models against Harmful Fine-tuning Attack

Neural Information Processing Systems

The new paradigm of fine-tuning-as-a-service introduces a new attack surface for Large Language Models (LLMs): a few harmful data uploaded by users can easily trick the fine-tuning to produce an alignment-broken model. We conduct an empirical analysis and uncover a harmful embedding drift phenomenon, showing a probable cause of the alignment-broken effect. Inspired by our findings, we propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users fine-tuning. The core idea of Vaccine is to produce invariant hidden embeddings by progressively adding crafted perturbation to them in the alignment phase. This enables the embeddings to withstand harmful perturbation from un-sanitized user data in the fine-tuning phase. Our results on open source mainstream LLMs (e.g., Llama2, Opt, Vicuna) demonstrate that Vaccine can boost the robustness of alignment against harmful prompts induced embedding drift while reserving reasoning ability towards benign prompts.


Clarifying Misconceptions in COVID-19 Vaccine Sentiment and Stance Analysis and Their Implications for Vaccine Hesitancy Mitigation: A Systematic Review

arXiv.org Artificial Intelligence

Background Advances in machine learning (ML) models have increased the capability of researchers to detect vaccine hesitancy in social media using Natural Language Processing (NLP). A considerable volume of research has identified the persistence of COVID-19 vaccine hesitancy in discourse shared on various social media platforms. Methods Our objective in this study was to conduct a systematic review of research employing sentiment analysis or stance detection to study discourse towards COVID-19 vaccines and vaccination spread on Twitter (officially known as X since 2023). Following registration in the PROSPERO international registry of systematic reviews, we searched papers published from 1 January 2020 to 31 December 2023 that used supervised machine learning to assess COVID-19 vaccine hesitancy through stance detection or sentiment analysis on Twitter. We categorized the studies according to a taxonomy of five dimensions: tweet sample selection approach, self-reported study type, classification typology, annotation codebook definitions, and interpretation of results. We analyzed if studies using stance detection report different hesitancy trends than those using sentiment analysis by examining how COVID-19 vaccine hesitancy is measured, and whether efforts were made to avoid measurement bias. Results Our review found that measurement bias is widely prevalent in studies employing supervised machine learning to analyze sentiment and stance toward COVID-19 vaccines and vaccination. The reporting errors are sufficiently serious that they hinder the generalisability and interpretation of these studies to understanding whether individual opinions communicate reluctance to vaccinate against SARS-CoV-2. Conclusion Improving the reporting of NLP methods is crucial to addressing knowledge gaps in vaccine hesitancy discourse.



VigDet: Knowledge Informed Neural Temporal Point Process for Coordination Detection on Social Media

Neural Information Processing Systems

Recent years have witnessed an increasing use of coordinated accounts on social media, operated by misinformation campaigns to influence public opinion and manipulate social outcomes. Consequently, there is an urgent need to develop an effective methodology for coordinated group detection to combat the misinformation on social media. However, the sparsity of account activities on social media limits the performance of existing deep learning based coordination detectors as they can not exploit useful prior knowledge. Instead, the detectors incorporated with prior knowledge suffer from limited expressive power and poor performance. Therefore, in this paper we propose a coordination detection framework incorporating neural temporal point process with prior knowledge such as temporal logic or pre-defined filtering functions. Specifically, when modeling the observed data from social media with neural temporal point process, we jointly learn a Gibbs distribution of group assignment based on how consistent an assignment is to (1) the account embedding space and (2) the prior knowledge.


Retrieval Augmented Generation for Topic Modeling in Organizational Research: An Introduction with Empirical Demonstration

arXiv.org Artificial Intelligence

Analyzing textual data is the cornerstone of qualitative research. While traditional methods such as grounded theory and content analysis are widely used, they are labor-intensive and time-consuming. Topic modeling offers an automated complement. Yet, existing approaches, including LLM-based topic modeling, still struggle with issues such as high data preprocessing requirements, interpretability, and reliability. This paper introduces Agentic Retrieval-Augmented Generation (Agentic RAG) as a method for topic modeling with LLMs. It integrates three key components: (1) retrieval, enabling automatized access to external data beyond an LLM's pre-trained knowledge; (2) generation, leveraging LLM capabilities for text synthesis; and (3) agent-driven learning, iteratively refining retrieval and query formulation processes. To empirically validate Agentic RAG for topic modeling, we reanalyze a Twitter/X dataset, previously examined by Mu et al. (2024a). Our findings demonstrate that the approach is more efficient, interpretable and at the same time achieves higher reliability and validity in comparison to the standard machine learning approach but also in comparison to LLM prompting for topic modeling. These results highlight Agentic RAG's ability to generate semantically relevant and reproducible topics, positioning it as a robust, scalable, and transparent alternative for AI-driven qualitative research in leadership, managerial, and organizational research.


Vaccine: Perturbation-aware Alignment for Large Language Models against Harmful Fine-tuning Attack

Neural Information Processing Systems

The new paradigm of fine-tuning-as-a-service introduces a new attack surface for Large Language Models (LLMs): a few harmful data uploaded by users can easily trick the fine-tuning to produce an alignment-broken model. We conduct an empirical analysis and uncovera \textit{harmful embedding drift} phenomenon, showing a probable cause of the alignment-broken effect. Inspired by our findings, we propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users fine-tuning. The core idea of Vaccine is to produce invariant hidden embeddings by progressively adding crafted perturbation to them in the alignment phase. This enables the embeddings to withstand harmful perturbation from un-sanitized user data in the fine-tuning phase.


Argument Summarization and its Evaluation in the Era of Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have revolutionized various Natural Language Generation (NLG) tasks, including Argument Summarization (ArgSum), a key subfield of Argument Mining (AM). This paper investigates the integration of state-of-the-art LLMs into ArgSum, including for its evaluation. In particular, we propose a novel prompt-based evaluation scheme, and validate it through a novel human benchmark dataset. Our work makes three main contributions: (i) the integration of LLMs into existing ArgSum frameworks, (ii) the development of a new LLM-based ArgSum system, benchmarked against prior methods, and (iii) the introduction of an advanced LLM-based evaluation scheme. We demonstrate that the use of LLMs substantially improves both the generation and evaluation of argument summaries, achieving state-of-the-art results and advancing the field of ArgSum.


Can A Society of Generative Agents Simulate Human Behavior and Inform Public Health Policy? A Case Study on Vaccine Hesitancy

arXiv.org Artificial Intelligence

Can we simulate a sandbox society with generative agents to model human behavior, thereby reducing the over-reliance on real human trials for assessing public policies? In this work, we investigate the feasibility of simulating health-related decision-making, using vaccine hesitancy, defined as the delay in acceptance or refusal of vaccines despite the availability of vaccination services (MacDonald, 2015), as a case study. To this end, we introduce the VacSim framework with 100 generative agents powered by Large Language Models (LLMs). VacSim simulates vaccine policy outcomes with the following steps: 1) instantiate a population of agents with demographics based on census data; 2) connect the agents via a social network and model vaccine attitudes as a function of social dynamics and disease-related information; 3) design and evaluate various public health interventions aimed at mitigating vaccine hesitancy. To align with real-world results, we also introduce simulation warmup and attitude modulation to adjust agents' attitudes. We propose a series of evaluations to assess the reliability of various LLM simulations. Experiments indicate that models like Llama and Qwen can simulate aspects of human behavior but also highlight real-world alignment challenges, such as inconsistent responses with demographic profiles. This early exploration of LLM-driven simulations is not meant to serve as definitive policy guidance; instead, it serves as a call for action to examine social simulation for policy development.