Goto

Collaborating Authors

Oncology



Integrating Artificial Intelligence in Treatment Planning

#artificialintelligence

At the American Association of Physicists in Medicine (AAPM) 2019 meeting, new artificial intelligence (AI) software to assist with radiotherapy treatment planning systems was highlighted. The goal of the AI-based systems is to save staff time, while still allowing clinicians to do the final patient review. RaySearch demonstrated a new U.S. Food and Drug Administration (FDA)-cleared machine learning treatment planning system. The RaySearch RayStation machine learning algorithm is being used clinically by University Health Network, Princess Margaret Cancer Center, Toronto, Canada, where it was rolled out over several months in late-2019. Medical physicist Leigh Conroy, Ph.D., was involved in this rollout and helped conduct a study, showing the automated plans and traditionally made plans to radiation oncologists to get valuable feedback.


Integrating Artificial Intelligence in Treatment Planning

#artificialintelligence

At the American Association of Physicists in Medicine (AAPM) 2019 meeting, new artificial intelligence (AI) software to assist with radiotherapy treatment planning systems was highlighted. The goal of the AI-based systems is to save staff time, while still allowing clinicians to do the final patient review. RaySearch demonstrated a new U.S. Food and Drug Administration (FDA)-cleared machine learning treatment planning system. The RaySearch RayStation machine learning algorithm is being used clinically by University Health Network, Princess Margaret Cancer Center, Toronto, Canada, where it was rolled out over several months in late-2019. Medical physicist Leigh Conroy, Ph.D., was involved in this rollout and helped conduct a study, showing the automated plans and traditionally made plans to radiation oncologists to get valuable feedback.


Accuracy and Efficiency of an Artificial Intelligence Tool When Counting Breast Mitoses - PubMed

#artificialintelligence

Background: The mitotic count in breast carcinoma is an important prognostic marker. Unfortunately substantial inter- and intra-laboratory variation exists when pathologists manually count mitotic figures. Artificial intelligence (AI) coupled with whole slide imaging offers a potential solution to this problem. The aim of this study was to accordingly critique an AI tool developed to quantify mitotic figures in whole slide images of invasive breast ductal carcinoma.


Quantum computers offer possibilities for cancer detection

#artificialintelligence

A quantum computer makes smart use of the effects of quantum mechanics, which can lead to algorithms which are exponentially faster than their classical counterpart. As a result, quantum computers have the potential to solve complex problems that are practically impossible for today's computers, as the calculations could take centuries using traditional computers. The early detection of cancer is essential for successful treatment. An attempt is therefore being made to develop a model that can predict whether a malignant cancer will develop in tissue. Determining the most important factors that play a role in the development of cancer is one of the greatest challenges for a good prediction.


12 Real-World Applications of Machine Learning in Healthcare

#artificialintelligence

According to news, Machine Learning is one of the most prominent technology for the future of the Healthcare industry. Is there any significant value, or is it just optimistic forecasts? In this article, you will learn on some practical implementations of the technology, as well as some on-point predictions. Today, technology-enabled healthcare is a reality as smart medical devices become a widespread thing. The healthcare industry welcomes the innovation; that's why the future of AI in healthcare is very bright.


Human-Artificial intelligence collaborations best for skin cancer diagnosis

#artificialintelligence

The global team tested for the first time whether a'real world', collaborative approach involving clinicians assisted by AI improved the accuracy of skin cancer clinical decision making. UQ's Professor Monika Janda said the highest diagnostic accuracy was achieved when crowd wisdom and AI predictions were combined, suggesting human-AI and crowd-AI collaborations were preferable to individual experts or AI alone "This is important because AI decision support has slowly started to infiltrate healthcare settings, and yet few studies have tested its performance in real world settings or how clinicians interact with it," Professor Janda said. "Inexperienced evaluators gained the highest benefit from AI decision support and expert evaluators confident in skin cancer diagnosis achieved modest or no benefit. "These findings indicated a combined AI-human approach to skin cancer diagnosis may be the most relevant for clinicians in the future." Although AI diagnostic software has demonstrated expert level accuracy in several image-based medical studies, researchers have remained unclear on whether its use improved clinical practice. "Our study found that good quality AI support was useful to clinicians but needed to be simple, concrete, and in accordance with a given task," Professor Janda said. "For clinicians of the future this means that AI-based screening and diagnosis might soon be available to support them on a daily basis.


The rise of AI in medicine

#artificialintelligence

By now, it's almost old news that artificial intelligence (AI) will have a transformative role in medicine. Algorithms have the potential to work tirelessly, at faster rates and now with potentially greater accuracy than clinicians. In 2016, it was predicted that'machine learning will displace much of the work of radiologists and anatomical pathologists'. In the same year, a University of Toronto professor controversially announced that'we should stop training radiologists now'. But is it really the beginning of the end for some medical specialties?


Automated histologic diagnosis of CNS tumors with machine learning

#artificialintelligence

A new mass discovered in the CNS is a common reason for referral to a neurosurgeon. CNS masses are typically discovered on MRI or computed tomography (CT) scans after a patient presents with new neurologic symptoms. Presenting symptoms depend on the location of the tumor and can include headaches, seizures, difficulty expressing or comprehending language, weakness affecting extremities, sensory changes, bowel or bladder dysfunction, gait and balance changes, vision changes, hearing loss and endocrine dysfunction. A mass in the CNS has a broad differential diagnosis, including tumor, infection, inflammatory or demyelinating process, infarct, hemorrhage, vascular malformation and radiation treatment effect. The most likely diagnoses can be narrowed based on patient demographics, medical history, imaging characteristics and adjunctive laboratory studies. However, accurate histopathologic interpretation of tissue obtained at the time of surgery is frequently required to make a diagnosis and guide intraoperative decision making. Over half of CNS tumors in adults are metastases from systemic cancer originating elsewhere in the body [1]. An estimated 9.6% of adults with lung cancer, melanoma, breast cancer, renal cell carcinoma and colorectal cancer have brain metastases [2].