Government
The Mind at AI: Horseless Carriage to Clock
Commentators on AI converge on two goals they believe define the field: (1) to better understand the mind by specifying computational models and (2) to construct computer systems that perform actions traditionally regarded as mental. We should recognize that AI has a third, hidden, more basic aim; that the first two goals are special cases of the third; and that the actual technical substance of AI concerns only this more basic aim. This third aim is to establish new computation-based representational media, media in which human intellect can come to express itself with different clarity and force. This article articulates this proposal by showing how the intellectual activity we label AI can be likened in revealing ways to each of five familiar technologies.
Expert Systems in Government Administration
Artificial Intelligence is solving more and more real world problems, but penetration into the complexities of government administration has been minimal. The author suggests that combining expert system technology with conventional procedural computer systems can lead to substantial efficiencies. Business rules can be removed from business-oriented computer systems and stored in a separate but integrated knowledge base, where maintenance will be centralized. Fourteen specific practical applications are suggested.
A Method for the Design of Stable Lateral Inhibition Networks that is Robust in the Presence of Circuit Parasitics
Jr., John L. Wyatt, Standley, D. L.
A serious problem of unwanted spontaneous oscillation often arises with these circuits and renders them unusable in practice. This paper reports a design approach that guarantees such a system will be stable, even though the values of designed elements and parasitic elements in the resistive grid may be unknown. The method is based on a rigorous, somewhat novel mathematical analysis using Tellegen's theorem and the idea of Popov multipliers from control theory. It is thoroughly practical because the criteria are local in the sense that no overall analysis of the interconnected system is required, empirical in the sense that they involve only measurable frequency response data on the individual cells, and robust in the sense that unmodelled parasitic resistances and capacitances in the interconnection networkcannot affect the analysis. I. INTRODUCTION The term "lateral inhibition" first arose in neurophysiology to describe a common form of neural circuitry in which the output of each neuron in some population is used to inhibit the response of each of its neighbors. Perhaps the best understood example is the horizontal cell layer in the vertebrate retina, in which lateral inhibition simultaneously enhances intensity edges and acts as an automatic lain control to extend the dynamic range of the retina as a whole. The principle has been used in the design of artificial neural system algorithms by Kohonen2 and others and in the electronic design of neural chips by Carver Mead et.
Introduction to a System for Implementing Neural Net Connections on SIMD Architectures
INTRODUCTION TO A SYSTEM FOR IMPLEMENTING NEURAL NET CONNECTIONS ON SIMD ARCHITECTURES Sherryl Tomboulian Institute for Computer Applications in Science and Engineering NASA Langley Research Center, Hampton VA 23665 ABSTRACT Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized communication. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm that allows the formation of arbitrary connections between the "neurons". A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.
A Method for the Design of Stable Lateral Inhibition Networks that is Robust in the Presence of Circuit Parasitics
Jr., John L. Wyatt, Standley, D. L.
A METHOD FOR THE DESIGN OF STABLE LATERAL INHIBITION NETWORKS THAT IS ROBUST IN THE PRESENCE OF CIRCUIT PARASITICS J.L. WYATT, Jr and D.L. STANDLEY Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge, Massachusetts 02139 ABSTRACT In the analog VLSI implementation of neural systems, it is sometimes convenient to build lateral inhibition networks by using a locally connected on-chip resistive grid. A serious problem of unwanted spontaneous oscillation often arises with these circuits and renders them unusable in practice. This paper reports a design approach that guarantees such a system will be stable, even though the values of designed elements and parasitic elements in the resistive grid may be unknown. The method is based on a rigorous, somewhat novel mathematical analysis using Tellegen's theorem and the idea of Popov multipliers from control theory. It is thoroughly practical because the criteria are local in the sense that no overall analysis of the interconnected system is required, empirical in the sense that they involve only measurable frequency response data on the individual cells, and robust in the sense that unmodelled parasitic resistances and capacitances in the interconnection network cannot affect the analysis.
Encoding Geometric Invariances in Higher-Order Neural Networks
Giles, C. Lee, Griffin, R. D., Maxwell, T.
ENCODING GEOMETRIC INVARIANCES IN HIGHER-ORDER NEURAL NETWORKS C.L. Giles Air Force Office of Scientific Research, Bolling AFB, DC 20332 R.D. Griffin Naval Research Laboratory, Washington, DC 20375-5000 T. Maxwell Sachs-Freeman Associates, Landover, MD 20785 ABSTRACT We describe a method of constructing higher-order neural networks that respond invariantly under geometric transformations on the input space. By requiring each unit to satisfy a set of constraints on the interconnection weights, a particular structure is imposed on the network. A network built using such an architecture maintains its invariant performance independent of the values the weights assume, of the learning rules used, and of the form of the nonlinearities in the network. The invariance exhibited by a firstorder network is usually of a trivial sort, e.g., responding only to the average input in the case of translation invariance, whereas higher-order networks can perform useful functions and still exhibit the invariance. We derive the weight constraints for translation, rotation, scale, and several combinations of these transformations, and report results of simulation studies.
Foundations and Grand Challenges of Artificial Intelligence: AAAI Presidential Address
AAAI is a society devoted to supporting the progress in science, technology and applications of AI. I thought I would use this occasion to share with you some of my thoughts on the recent advances in AI, the insights and theoretical foundations that have emerged out of the past thirty years of stable, sustained, systematic explorations in our field, and the grand challenges motivating the research in our field.
What AI Can Do for Battle Management: A Report of the First AAAI Workshop on AI Applications to Battle Management
The following is a synopsis of the findings of the first AAAI Workshop on AI Applications to Battle Management held at the University of Washington, 16 July 1987. This paper served as a focus for the workshop presentations and discussions and was augmented by the workshop presentations; it can also serve as a roadmap of topics for future workshops. AI can provide battle management with such capabilities as sensor data fusion and adaptive simulations. Also, several key needs in battle management will be AI research topics for years to come, such as understanding free text and inferencing in real time.