United States Government
Foundations and Grand Challenges of Artificial Intelligence: AAAI Presidential Address
AAAI is a society devoted to supporting the progress in science, technology and applications of AI. I thought I would use this occasion to share with you some of my thoughts on the recent advances in AI, the insights and theoretical foundations that have emerged out of the past thirty years of stable, sustained, systematic explorations in our field, and the grand challenges motivating the research in our field.
Intelligent Computer-Aided Engineering
The goal of intelligent computer-aided engineering (ICAE) is to construct computer programs that capture a significant fraction of an engineer's knowledge. Today, ICAE systems are a goal, not a reality. This article attempts to refine that goal and suggest how to get there. We begin by examining several scenarios of what ICAE systems could be like. Next we describe why ICAE won't evolve directly from current applications of expert system technology to engineering problems. I focus on qualitative physics as a critical area where progress is needed, both in terms of representations and styles of reasoning.
What AI Can Do for Battle Management: A Report of the First AAAI Workshop on AI Applications to Battle Management
The following is a synopsis of the findings of the first AAAI Workshop on AI Applications to Battle Management held at the University of Washington, 16 July 1987. The workshop organizer, Pete Bonasso, sent a point paper to a number of invited presenters giving his opinion of what AI could and could not do for battle management. This paper served as a focus for the workshop presentations and discussions and was augmented by the workshop presentations; it can also serve as a roadmap of topics for future workshops. AI can provide battle management with such capabilities as sensor data fusion and adaptive simulations. Also, several key needs in battle management will be AI research topics for years to come, such as understanding free text and inferencing in real time. Finally, there are several areas -- cooperating systems and terrain reasoning, for example -- where, given some impetus, AI might be able to provide help in the near future.
Navigation and Mapping in Large Scale Space
Kuipers, Benjamin J., Levitt, Todd S.
In a large-scale space, structure is at a significantly larger scale than the observations available at an instant. To learn the structure of a large-scale space from observations, the observer must build a cognitive map of the environment by integrating observations over an extended period of time, inferring spatial structure from perceptions and the effects of actions. The cognitive map representation of large-scale space must account for a mapping, or learning structure from observations, and navigation, or creating and executing a plan to travel from one place to another. Approaches to date tend to be fragile either because they don't build maps; or because they assume nonlocal observations, such as those available in preexisting maps or global coordinate systems, including active landmark beacons and geo-locating satellites. We propose that robust navigation and mapping systems for large-scale space can be developed by adhering to a natural, four-level semantic hierarchy of descriptions for representation, planning, and execution of plans in large-scale space. The four levels are sensorimotor interaction, procedural behaviors, topological mapping, and metric mapping. Effective systems represent the environment, relative to sensors, at all four levels and formulate robust system behavior by moving flexibly between representational levels at run time. We demonstrate our claims in three implemented models: Tour, the Qualnav system simulator, and the NX robot.
New Mexico State University's Computing Research Laboratory
The Computing Research Laboratory (CRL) at New Mexico State University is a center for research in artificial intelligence and cognitive science. Specific areas of research include the human-computer interface, natural language understanding, connectionism, knowledge representation and reasoning, computer vision, robotics, and graph theory. This article describes the ongoing projects at CRL.
Real-Time Knowledge-Based Systems
Laffey, Thomas J., Cox, Preston A., Schmidt, James L., Kao, Simon M., Readk, Jackson Y.
Real-time domains present a new and challenging environment for the application of knowledge-based problem-solving techniques. However, a substantial amount of research is still needed to solve many difficult problems before real-time expert systems can enhance current monitoring and control systems. In this article, we examine how the real-time problem domain is significantly different from those domains which have traditionally been solved by expert systems. We conduct a survey on the current state of the art in applying knowledge-based systems to real-time problems and describe the key issues that are pertinent in a real-time domain. The survey is divided into three areas: applications, tools, and theoretic issues. From the results of the survey, we identify a set of real-time research issues that have yet to be solved and point out limitations of current tools for real-time problems. Finally, we propose a set of requirements that a real-time knowledge-based system must satisfy.
The Problem of Extracting the Knowledge of Experts from the Perspective of Experimental Psychology
The first step in the development of an expert system is the extraction and characterization of the knowledge and skills of an expert. This step is widely regarded as the major bottleneck in the system development process. To assist knowledge engineers and others who might be interested in the development of an expert system, I offer (1) a working classification of methods for extracting an expert's knowledge, (2) some ideas about the types of data that the methods yield, and (3) a set of criteria by which the methods can be compared relative to the needs of the system developer. The discussion highlights certain issues, including the contrast between the empirical approach taken by experimental psychologists and the formalism-oriented approach that is generally taken by cognitive scientists.