Energy
Evolving Systems of Knowledge
The enterprise of developing knowledge-based systems is currently witnessing great growth in popularity. The central unity of many such programs is that they interpret knowledge that is explicitly encoded as rules. While rule-based programming comes with certain clear pay-offs, further fundamental advances in research are needed to extend the scope of tasks that can be adequately represented in this fashion. This article is a statement of personal perspective by a researcher interested in fundamental issues in the symbolic representation and organization ok knowledge.
Artificial Intelligence Research in France
In the first section, some characteristic features of AI research in France are presented, including difficulties with the current means and the current organization of AI research. In the second section, the state-of-the-art in different areas of AI is described. Besides some weakness, and in spite of the general difficulties mentioned in the first section, strong points and great potentialities are exhibited. This allows us to conclude that AI research in France may play an important part at the international level, if the necessary means for its development in the middle and long term are given.
Artificial Intelligence at Schlumbergers
Schlumberger is a large, multinational corporation concerned primarily with the measurement, collection, and interpretation of data. For the past fifty years, most of the activities have been related to hydrocarbon exploration. The efficient location and production of hydrocarbons from an underground formation requires a great deal of knowledge about the formation, ranging in scale from the size and shape of the rock's pore spaces to the size and shape of the entire reservoir. Schlumberger provides its clients with two types of information: measurements, called logs, of the petrophysical properties of the rock around the borehole, such as its electrical, acoustical, and radioactive characteristics; and in terpretations of these logs in terms of geophysical properties such as porosity and mineral composition.
Artificial Intelligence at Schlumbergers
Schlumberger is a large, multinational corporation concerned primarily with the measurement, collection, and interpretation of data. For the past fifty years, most of the activities have been related to hydrocarbon exploration. The efficient location and production of hydrocarbons from an underground formation requires a great deal of knowledge about the formation, ranging in scale from the size and shape of the rock's pore spaces to the size and shape of the entire reservoir. Schlumberger provides its clients with two types of information : measurements, called logs, of the petrophysical properties of the rock around the borehole, such as its electrical, acoustical, and radioactive characteristics; and in terpretations of these logs in terms of geophysical properties such as porosity and mineral composition. Since log interpretation is expert skill, the emergence of expert systems technology prompted Schlumberger's initial interest in Artificial Intelligence. Our first full- scale attempt at a commercial-quality expert system was the Dipmeter Advisor. Following these initial efforts, Schlumberger has expanded its Artificial Intelligence activities, and is now engaged in both basic and applied research in a wide variety of areas.
On the Development of Commercial Expert Systems
We use our experience with the Dipmeter Advisor system for well-log interpretation as a case study to examine the development of commercial expert system. We argue that the tools and ideas of rapid prototyping and successive refinement accelerate the development process. We note that different types of people are required at different stages of expert system development: Those who are primarily knowledgeable in the domain, but who can use the framework to expand the domain knowledge; and those who can actually design and build expert systems. Finally, we discuss the problem of technology transfer and compare our experience with some of the traditional wisdom of expert system development.
On the Development of Commercial Expert Systems
We use our experience with the Dipmeter Advisor system for well-log interpretation as a case study to examine the development of commercial expert system. We discuss the nature of these systems as we see them in the coming decade, characteristics of the evolution process, development methods, and skills required in the development team. We argue that the tools and ideas of rapid prototyping and successive refinement accelerate the development process. We note that different types of people are required at different stages of expert system development: Those who are primarily knowledgeable in the domain, but who can use the framework to expand the domain knowledge; and those who can actually design and build expert systems. Finally, we discuss the problem of technology transfer and compare our experience with some of the traditional wisdom of expert system development.
Applications Development Using a Hybrid Artificial Intelligence Development System
Kunz, John C., Kehler, Thomas P., Williams, Michael D.
This article describes our initial experience with building applications programs in a hybrid AI tool environment. Traditional AI systems developments have emphasized a single methodology, such as frames, rules or logic programming, as a methodology that is natural, efficient, and uniform. The applications we have developed suggest that natural-ness, efficiency and flexibility are all increased by trading uniformity for the power that is provided by a small set of appropriate programming and representation tools. The tools we use are based on five major AI methodologies: frame-based knowledge representation with inheritance, rule-based reasoning, LISP, interactive graphics, and active values. Object-oriented computing provides a principle for unifying these different methodologies within a single system.
A Perspective on Automatic Programming
Most work in automatic programming has focused primarily on the roles of deduction and programming knowledge. However, the role played by knowledge of the task domain seems to be at least as important, both for the usability of an automatic programming system and for the feasibility of building one which works on non-trivial problems. This perspective has evolved during the course of a variety of studies over the last several years, including detailed examination of existing software for a particular domain (quantitative interpretation of oil well logs) and the implementation of an experimental automatic programming system for that domain. The importance of domain knowledge has two important implications: a primary goal of automatic programming research should be to characterize the programming process for specific domains; and a crucial issue to be addressed in these characterizations is the interaction of domain and programming knowledge during program synthesis.
A Perspective on Automatic Programming
Most work in automatic programming has focused primarily on the roles of deduction and programming knowledge. However, the role played by knowledge of the task domain seems to be at least as important, both for the usability of an automatic programming system and for the feasibility of building one which works on non-trivial problems. This perspective has evolved during the course of a variety of studies over the last several years, including detailed examination of existing software for a particular domain (quantitative interpretation of oil well logs) and the implementation of an experimental automatic programming system for that domain. The importance of domain knowledge has two important implications: a primary goal of automatic programming research should be to characterize the programming process for specific domains; and a crucial issue to be addressed in these characterizations is the interaction of domain and programming knowledge during program synthesis.