Goto

Collaborating Authors

 Energy


The Effects of Circuit Integration on a Feature Map Vector Quantizer

Neural Information Processing Systems

The effects of parameter modifications imposed by hardware constraints on a self-organizing feature map algorithm were examined. Performance was measured by the error rate of a speech recognition system which included this algorithm as part of the front-end processing. System parameters which were varied included weight (connection strength) quantization, adap tation quantization, distance measures and circuit approximations which include device characteristics and process variability. Experiments using the TI isolated word database for 16 speakers demonstrated degradation in performance when weight quantization fell below 8 bits. The competitive nature of the algorithm rela..xes constraints on uniformity and linearity which makes it an excellent candidate for a fully analog circuit implementation. Prototype circuits have been fabricated and characterized following the constraints established through the simulation efforts. 1 Introduction The self-organizing feature map algorithm developed by Kohonen [Kohonen, 1988] readily lends itself to the task of vector quantization for use in such areas as speech recognition.


Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications

Neural Information Processing Systems

In this paper we compare regression and classification systems. A regression system can generate an output f for an input X, where both X and f are continuous and, perhaps, multidimensional. A classification system can generate an output class, C, for an input X, where X is continuous and multidimensional and C is a member of a finite alphabet. The statistical technique of Classification And Regression Trees (CART) was developed during the years 1973 (Meisel and Michalpoulos) through 1984 (Breiman el al).


Components of Expertise

AI Magazine

It (McDermott 1988), and the idea of generic also helps to explicitly focus on how to go tasks and task-specific architectures (Chandrasekaran from the knowledge level to the symbol or 1983). These various proposals are program level. I call this in-between level the obviously related to each other, which makes knowledge-use level. At the knowledge-use it desirable to construct a synthesis that combines level, we focus on issues such as how the their strengths. Such a synthesis is presented overall task will be decomposed into manageable here in the form of a componential subtasks, what ordering will be imposed framework. The framework stresses modularity on the tasks, what kind of access to knowledge and consideration of the pragmatic constraints will be needed (and, consequently, what of the domain.



Neural Networks that Learn to Discriminate Similar Kanji Characters

Neural Information Processing Systems

Yoshihiro Morl Kazuhiko Yokosawa ATR Auditory and Visual Perception Research Laboratories 2-1-61 Shiromi Higashiku Osaka 540 Japan ABSTRACT A neural network is applied to the problem of recognizing Kanji characters. The recognition accuracy was higher than that of conventional methods. An analysis of connection weights showed that trained networks can discern the hierarchical structure of Kanji characters. This strategy of trained networks makes high recognition accuracy possible. Our results suggest that neural networks are very effective for Kanji character recognition. 1 INTRODUCTION Neural networks are applied to recognition tasks in many fields.


Letters to the Editor.

AI Magazine

These debates end by a culture for accommodating of the medical AI community, I feel I up merely as arguments in which its limited knowledge representations. Those of us in intelligence is). Depending such an extent that the limits of the medical AI have been highly sensitized upon what properties of human and computer system would no longer be to common misunderstandings artificial intelligence are stressed we a representational problem? We also encounter a general lack of of the relationship. Will we need to ascribe pleasure and realistic expectations regarding the The problem is that the models of pain to our computer experts?


FAST, CHEAP AND OUT OF CONTROL: A ROBOT INVASION OF THE SOLAR SYSTEM

Classics

We argue that the time between mission conception and implementation can be radically reduced, that launch mass can be slashed, that totally autonomous robots can be more reliable than ground controlled robots, and that large numbers of robots can change the tradeoff between reliability of individual components and overall mission success. Lastly, we suggest that within a few years it will be possible at modest cost to invade a planet with millions of tiny robotsJournal of The British Interplanetary Society, Vol. 42, pp 478-485


Foundations and Grand Challenges of Artificial Intelligence: AAAI Presidential Address

AI Magazine

AAAI is a society devoted to supporting the progress in science, technology and applications of AI. I thought I would use this occasion to share with you some of my thoughts on the recent advances in AI, the insights and theoretical foundations that have emerged out of the past thirty years of stable, sustained, systematic explorations in our field, and the grand challenges motivating the research in our field.


Intelligent Computer-Aided Engineering

AI Magazine

The goal of intelligent computer-aided engineering (ICAE) is to construct computer programs that capture a significant fraction of an engineer's knowledge. Today, ICAE systems are a goal, not a reality. This article attempts to refine that goal and suggest how to get there. We begin by examining several scenarios of what ICAE systems could be like. Next we describe why ICAE won't evolve directly from current applications of expert system technology to engineering problems. I focus on qualitative physics as a critical area where progress is needed, both in terms of representations and styles of reasoning.


Real-Time Knowledge-Based Systems

AI Magazine

Real-time domains present a new and challenging environment for the application of knowledge-based problem-solving techniques. However, a substantial amount of research is still needed to solve many difficult problems before real-time expert systems can enhance current monitoring and control systems. In this article, we examine how the real-time problem domain is significantly different from those domains which have traditionally been solved by expert systems. We conduct a survey on the current state of the art in applying knowledge-based systems to real-time problems and describe the key issues that are pertinent in a real-time domain. The survey is divided into three areas: applications, tools, and theoretic issues. From the results of the survey, we identify a set of real-time research issues that have yet to be solved and point out limitations of current tools for real-time problems. Finally, we propose a set of requirements that a real-time knowledge-based system must satisfy.