Social Development

Work on leveraging optimization with mixed individual and social learning appears on Applied Soft Computing


We present CGO-AS, a generalized Ant System (AS) implemented in the framework of Cooperative Group Optimization (CGO), to show the leveraged optimization with a mixed individual and social learning. In CGO-AS, each ant (agent) is added with an individual memory, and is implemented with a novel search strategy to use individual and social cues in a controlled proportion. The presented CGO-AS is therefore especially useful in exposing the power of the mixed individual and social learning for improving optimization. The results prove that a cooperative ant group using both individual and social learning obtains a better performance than the systems solely using either individual or social learning.

The Dynamics of Reinforcement Social Learning in Cooperative Multiagent Systems

AAAI Conferences

Coordination in cooperative multiagent systems is an important problem in multiagent learning literature. In practical complex environments, the interactions between agents can be sparse, and each agent's interacting partners may change frequently and randomly. To this end, we investigate the multiagent coordination problems in cooperative environments under the social learning framework. We consider a large population of agents where each agent interacts with another agent randomly chosen from the population in each round. Each agent learns its policy through repeated interactions with the rest of agents via social learning. It is not clear a priori if all agents can learn a consistent optimal coordination policy in such a situation. We distinguish two types of learners: individual action learner and joint action learner. The learning performance of both learners are evaluated under a number of challenging cooperative games, and the influence of the information sharing degree on the learning performance is investigated as well.

Near-Optimal Play in a Social Learning Game

AAAI Conferences

We provide an algorithm to compute near-optimal strategies for the Cultaptation social learning game. We show that the strategies produced by our algorithm are near-optimal, both in their expected utility and their expected reproductive success. We show how our algorithm can be used to provide insight into evolutionary conditions under which learning is best done by copying others, versus the conditions under which learning is best done by trial-and-error.