Goto

Collaborating Authors

 Computer Based Training


Online Classification with Predictions

Neural Information Processing Systems

We study online classification when the learner has access to predictions about future examples. We design an online learner whose expected regret is never worse than the worst-case regret, gracefully improves with the quality of the predictions, and can be significantly better than the worst-case regret when the predictions of future examples are accurate. As a corollary, we show that if the learner is always guaranteed to observe data where future examples are easily predictable, then online learning can be as easy as transductive online learning. Our results complement recent work in online algorithms with predictions and smoothed online classification, which go beyond a worse-case analysis by using machine-learned predictions and distributional assumptions respectively.


BanditPAM: Almost Linear Time k-Medoids Clustering via Multi-Armed Bandits Mo Tiwari

Neural Information Processing Systems

Clustering is a ubiquitous task in data science. Compared to the commonly used k-means clustering, k-medoids clustering requires the cluster centers to be actual data points and supports arbitrary distance metrics, which permits greater interpretability and the clustering of structured objects. Current state-of-the-art k-medoids clustering algorithms, such as Partitioning Around Medoids (PAM), are iterative and are quadratic in the dataset size n for each iteration, being prohibitively expensive for large datasets.


BanditPAM: Almost Linear Time k-Medoids Clustering via Multi-Armed Bandits Mo Tiwari

Neural Information Processing Systems

Clustering is a ubiquitous task in data science. Compared to the commonly used k-means clustering, k-medoids clustering requires the cluster centers to be actual data points and supports arbitrary distance metrics, which permits greater interpretability and the clustering of structured objects. Current state-of-the-art k-medoids clustering algorithms, such as Partitioning Around Medoids (PAM), are iterative and are quadratic in the dataset size n for each iteration, being prohibitively expensive for large datasets.


F-OAL: Forward-only Online Analytic Learning with Fast Training and Low Memory Footprint in Class Incremental Learning

Neural Information Processing Systems

Online Class Incremental Learning (OCIL) aims to train models incrementally, where data arrive in mini-batches, and previous data are not accessible. A major challenge in OCIL is Catastrophic Forgetting, i.e., the loss of previously learned knowledge. Among existing baselines, replay-based methods show competitive results but requires extra memory for storing exemplars, while exemplar-free (i.e., data need not be stored for replay in production) methods are resourcefriendly but often lack accuracy. In this paper, we propose an exemplar-free approach--Forward-only Online Analytic Learning (F-OAL). Unlike traditional methods, F-OAL does not rely on back-propagation and is forward-only, significantly reducing memory usage and computational time. Cooperating with a pre-trained frozen encoder with Feature Fusion, F-OAL only needs to update a linear classifier by recursive least square. This approach simultaneously achieves high accuracy and low resource consumption. Extensive experiments on benchmark datasets demonstrate F-OAL's robust performance in OCIL scenarios.


SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency

Neural Information Processing Systems

In this paper, we explore how we can build upon the data and models of Internet images and use them to adapt to robot vision without requiring any extra labels. We present a framework called Self-supervised Embodied Active Learning (SEAL). It utilizes perception models trained on internet images to learn an active exploration policy. The observations gathered by this exploration policy are labelled using 3D consistency and used to improve the perception model. We build and utilize 3D semantic maps to learn both action and perception in a completely self-supervised manner. The semantic map is used to compute an intrinsic motivation reward for training the exploration policy and for labelling the agent observations using spatio-temporal 3D consistency and label propagation. We demonstrate that the SEAL framework can be used to close the action-perception loop: it improves object detection and instance segmentation performance of a pretrained perception model by just moving around in training environments and the improved perception model can be used to improve Object Goal Navigation.


Hints-In-Browser: Benchmarking Language Models for Programming Feedback Generation

Neural Information Processing Systems

Generative AI and large language models hold great promise in enhancing programming education by generating individualized feedback and hints for learners. Recent works have primarily focused on improving the quality of generated feedback to achieve human tutors' quality. While quality is an important performance criterion, it is not the only criterion to optimize for real-world educational deployments.


Hints-In-Browser: Benchmarking Language Models for Programming Feedback Generation

Neural Information Processing Systems

Generative AI and large language models hold great promise in enhancing programming education by generating individualized feedback and hints for learners. Recent works have primarily focused on improving the quality of generated feedback to achieve human tutors' quality. While quality is an important performance criterion, it is not the only criterion to optimize for real-world educational deployments.


Curriculum Design for Teaching via Demonstrations: Theory and Applications

Neural Information Processing Systems

We consider the problem of teaching via demonstrations in sequential decisionmaking settings. In particular, we study how to design a personalized curriculum over demonstrations to speed up the learner's convergence. We provide a unified curriculum strategy for two popular learner models: Maximum Causal Entropy Inverse Reinforcement Learning (MaxEnt-IRL) and Cross-Entropy Behavioral Cloning (CrossEnt-BC). Our unified strategy induces a ranking over demonstrations based on a notion of difficulty scores computed w.r.t. the teacher's optimal policy and the learner's current policy. Compared to the state of the art, our strategy doesn't require access to the learner's internal dynamics and still enjoys similar convergence guarantees under mild technical conditions. Furthermore, we adapt our curriculum strategy to the setting where no teacher agent is present using task-specific difficulty scores. Experiments on a synthetic car driving environment and navigation-based environments demonstrate the effectiveness of our curriculum strategy.


Fairness and Efficiency in Online Class Matching MohammadTaghi Hajiaghayi Shayan Chashm Jahan Mohammad Sharifi University of Maryland University of Maryland Sharif University of Technology Suho Shin

Neural Information Processing Systems

The online bipartite matching problem, extensively studied in the literature, deals with the allocation of online arriving vertices (items) to a predetermined set of offline vertices (agents). However, little attention has been given to the concept of class fairness, where agents are categorized into different classes, and the matching algorithm must ensure equitable distribution across these classes. We here focus on randomized algorithms for the fair matching of indivisible items, subject to various definitions of fairness. Our main contribution is the first (randomized) non-wasteful algorithm that simultaneously achieves a 1/2 approximation to class envy-freeness (CEF) while simultaneously ensuring an equivalent approximation to the class proportionality (CPROP) and utilitarian social welfare (USW) objectives. We supplement this result by demonstrating that no non-wasteful algorithm can achieve an α-CEF guarantee for α > 0.761. In a similar vein, we provide a novel input instance for deterministic divisible matching that demonstrates a nearly tight CEF approximation. Lastly, we define the "price of fairness," which represents the trade-off between optimal and fair matching. We demonstrate that increasing the level of fairness in the approximation of the solution leads to a decrease in the objective of maximizing USW, following an inverse proportionality relationship.


SOAT: A Scene-and Object-Aware Transformer for Vision-and-Language Navigation

Neural Information Processing Systems

Natural language instructions for visual navigation often use scene descriptions (e.g., 'bedroom') and object references (e.g., 'green chairs') to provide a breadcrumb trail to a goal location. This work presents a transformer-based vision-andlanguage navigation (VLN) agent that uses two different visual encoders - a scene classification network and an object detector - which produce features that match these two distinct types of visual cues. In our method, scene features contribute high-level contextual information that supports object-level processing. With this design, our model is able to use vision-and-language pretraining (i.e., learning the alignment between images and text from large-scale web data) to substantially improve performance on the Room-to-Room (R2R) [1] and Room-Across-Room (RxR) [2] benchmarks. Specifically, our approach leads to improvements of 1.8% absolute in SPL on R2R and 3.7% absolute in SR on RxR. Our analysis reveals even larger gains for navigation instructions that contain six or more object references, which further suggests that our approach is better able to use object features and align them to references in the instructions.