Educational Technology
SocraticLM: Exploring Socratic Personalized Teaching with Large Language Models 1,2
Large language models (LLMs) are considered a crucial technology for advancing intelligent education since they exhibit the potential for an in-depth understanding of teaching scenarios and providing students with personalized guidance. Nonetheless, current LLM-based application in personalized teaching predominantly follows a "Question-Answering" paradigm, where students are passively provided with answers and explanations. In this paper, we propose SocraticLM, which achieves a Socratic "Thought-Provoking" teaching paradigm that fulfills the role of a real classroom teacher in actively engaging students in the thought process required for genuine problem-solving mastery. To build SocraticLM, we first propose a novel "Dean-Teacher-Student" multi-agent pipeline to construct a new dataset, SocraTeach, which contains 35K meticulously crafted Socratic-style multi-round (equivalent to 208K single-round) teaching dialogues grounded in fundamental mathematical problems. Our dataset simulates authentic teaching scenarios, interacting with six representative types of simulated students with different cognitive states, and strengthening four crucial teaching abilities. SocraticLM is then fine-tuned on SocraTeach with three strategies balancing its teaching and reasoning abilities. Moreover, we contribute a comprehensive evaluation system encompassing five pedagogical dimensions for assessing the teaching quality of LLMs. Extensive experiments verify that SocraticLM achieves significant improvements in the teaching performance, outperforming GPT4 by more than 12%.
SAM-Guided Masked Token Prediction for 3D Scene Understanding Liang Yang
Foundation models have significantly enhanced 2D task performance, and recent works like Bridge3D have successfully applied these models to improve 3D scene understanding through knowledge distillation, marking considerable advancements. Nonetheless, challenges such as the misalignment between 2D and 3D representations and the persistent long-tail distribution in 3D datasets still restrict the effectiveness of knowledge distillation from 2D to 3D using foundation models. To tackle these issues, we introduce a novel SAM-guided tokenization method that seamlessly aligns 3D transformer structures with region-level knowledge distillation, replacing the traditional KNN-based tokenization techniques. Additionally, we implement a group-balanced re-weighting strategy to effectively address the long-tail problem in knowledge distillation. Furthermore, inspired by the recent success of masked feature prediction, our framework incorporates a two-stage masked token prediction process in which the student model predicts both the global embeddings and the token-wise local embeddings derived from the teacher models trained in the first stage. Our methodology has been validated across multiple datasets, including SUN RGB-D, ScanNet, and S3DIS, for tasks like 3D object detection and semantic segmentation. The results demonstrate significant improvements over current State-of-the-art self-supervised methods, establishing new benchmarks in this field.
IKEA Manuals at Work: 4D Grounding of Assembly Instructions on Internet Videos
Shape assembly is a ubiquitous task in daily life, integral for constructing complex 3D structures like IKEA furniture. While significant progress has been made in developing autonomous agents for shape assembly, existing datasets have not yet tackled the 4D grounding of assembly instructions in videos, essential for a holistic understanding of assembly in 3D space over time. We introduce IKEA Video Manuals, a dataset that features 3D models of furniture parts, instructional manuals, assembly videos from the Internet, and most importantly, annotations of dense spatio-temporal alignments between these data modalities. To demonstrate the utility of IKEA Video Manuals, we present five applications essential for shape assembly: assembly plan generation, part-conditioned segmentation, partconditioned pose estimation, video object segmentation, and furniture assembly based on instructional video manuals. For each application, we provide evaluation metrics and baseline methods. Through experiments on our annotated data, we highlight many challenges in grounding assembly instructions in videos to improve shape assembly, including handling occlusions, varying viewpoints, and extended assembly sequences.
Equal Opportunity in Online Classification with Partial Feedback
Yahav Bechavod, Katrina Ligett, Aaron Roth, Bo Waggoner, Steven Z. Wu
We study an online classification problem with partial feedback in which individuals arrive one at a time from a fixed but unknown distribution, and must be classified as positive or negative. Our algorithm only observes the true label of an individual if they are given a positive classification. This setting captures many classification problems for which fairness is a concern: for example, in criminal recidivism prediction, recidivism is only observed if the inmate is released; in lending applications, loan repayment is only observed if the loan is granted. We require that our algorithms satisfy common statistical fairness constraints (such as equalizing false positive or negative rates -- introduced as "equal opportunity" in [18]) at every round, with respect to the underlying distribution. We give upper and lower bounds characterizing the cost of this constraint in terms of the regret rate (and show that it is mild), and give an oracle efficient algorithm that achieves the upper bound.
Scalable Early Childhood Reading Performance Prediction Zanming Huang 1
Models for student reading performance can empower educators and institutions to proactively identify at-risk students, thereby enabling early and tailored instructional interventions. However, there are no suitable publicly available educational datasets for modeling and predicting future reading performance. In this work, we introduce the Enhanced Core Reading Instruction (ECRI) dataset, a novel largescale longitudinal tabular dataset collected across 44 schools with 6,916 students and 172 teachers. We leverage the dataset to empirically evaluate the ability of state-of-the-art machine learning models to recognize early childhood educational patterns in multivariate and partial measurements. Specifically, we demonstrate a simple self-supervised strategy in which a Multi-Layer Perception (MLP) network is pre-trained over masked inputs to outperform several strong baselines while generalizing over diverse educational settings. To facilitate future developments in precise modeling and responsible use of models for individualized and early intervention strategies, our data and code are available at https://ecri-data.github.io/.
Teacher Teacher LLM LLM Teaching
Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, in human education, teaching enhances not only the students but also the teachers by fostering more rigorous and clearer reasoning, as well as deeper knowledge building. We ask: Can LLMs also learn by teaching (LbT) for better reasoning? If the answer is yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this question. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and bring improvements.
Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation
Increased training parameters have enabled large pre-trained models to excel in various downstream tasks. Nevertheless, the extensive computational requirements associated with these models hinder their widespread adoption within the community. We focus on Knowledge Distillation (KD), where a compact student model is trained to mimic a larger teacher model, facilitating the transfer of knowledge of large models. In contrast to much of the previous work, we scale up the parameters of the student model during training, to benefit from overparameterization without increasing the inference latency. In particular, we propose a tensor decomposition strategy that effectively over-parameterizes the relatively small student model through an efficient and nearly lossless decomposition of its parameter matrices into higher-dimensional tensors. To ensure efficiency, we further introduce a tensor constraint loss to align the high-dimensional tensors between the student and teacher models.
VideoGUI: A Benchmark for GUI Automation from Instructional Videos Kevin Qinghong Lin
Graphical User Interface (GUI) automation holds significant promise for enhancing human productivity by assisting with computer tasks. Existing task formulations primarily focus on simple tasks that can be specified by a single, language-only instruction, such as "Insert a new slide." In this work, we introduce VideoGUI, a novel multi-modal benchmark designed to evaluate GUI assistants on visual-centric GUI tasks. Sourced from high-quality web instructional videos, our benchmark focuses on tasks involving professional and novel software (e.g., Adobe Photoshop or Stable Diffusion WebUI) and complex activities (e.g., video editing). VideoGUI evaluates GUI assistants through a hierarchical process, allowing for identification of the specific levels at which they may fail: (i) high-level planning: reconstruct procedural subtasks from visual conditions without language descriptions; (ii) middle-level planning: generate sequences of precise action narrations based on visual state (i.e., screenshot) and goals; (iii) atomic action execution: perform specific actions such as accurately clicking designated elements. For each level, we design evaluation metrics across individual dimensions to provide clear signals, such as individual performance in clicking, dragging, typing, and scrolling for atomic action execution. Our evaluation on VideoGUI reveals that even the SoTA large multimodal model GPT4o performs poorly on visual-centric GUI tasks, especially for high-level planning.
Smoothed Online Classification can be Harder than Batch Classification
We study online classification under smoothed adversaries. In this setting, at each time point, the adversary draws an example from a distribution that has a bounded density with respect to a fixed base measure, which is known apriori to the learner. For binary classification and scalar-valued regression, previous works [Haghtalab et al., 2020, Block et al., 2022] have shown that smoothed online learning is as easy as learning in the iid batch setting under PAC model. However, we show that smoothed online classification can be harder than the iid batch classification when the label space is unbounded. In particular, we construct a hypothesis class that is learnable in the iid batch setting under the PAC model but is not learnable under the smoothed online model. Finally, we identify a condition that ensures that the PAC learnability of a hypothesis class is sufficient for its smoothed online learnability.
Online Classification with Predictions
We study online classification when the learner has access to predictions about future examples. We design an online learner whose expected regret is never worse than the worst-case regret, gracefully improves with the quality of the predictions, and can be significantly better than the worst-case regret when the predictions of future examples are accurate. As a corollary, we show that if the learner is always guaranteed to observe data where future examples are easily predictable, then online learning can be as easy as transductive online learning. Our results complement recent work in online algorithms with predictions and smoothed online classification, which go beyond a worse-case analysis by using machine-learned predictions and distributional assumptions respectively.