Goto

Collaborating Authors

Higher Education


The Impact of AI on Accessibility

#artificialintelligence

Gerry Bayne: Welcome to EDUCAUSE Exchange, where we focus on a single question from the higher ed IT community and hear advice, anecdotes, best practices, and more. Students with disabilities are a vulnerable population in higher education. Yet the real percentage is likely higher, given that many choose not to disclose their disability to their institutions. Students with disabilities experience barriers to education that many other students do not. And they can have both visible and invisible needs. Their dropout rates are substantially higher and their graduation rates are significantly lower than those of non-disabled students.


U.N. Panel: Digital Technology in Policing Can Reinforce Racial Bias – Digitalmunition

#artificialintelligence

Governments need an abrupt change of direction to avoid "stumbling zombielike into a digital welfare dystopia," Philip G. Alston, a human rights expert reporting on poverty, told the United Nations General Assembly last year, in a report calling for the regulation of digital technologies, including artificial intelligence, to ensure compliance with human rights. The private companies that play an increasingly dominant role in social welfare delivery, he noted, "operate in a virtually human-rights-free zone." Last month, the U.N. expert monitoring contemporary forms of racism flagged concerns that "governments and nonstate actors are developing and deploying emerging digital technologies in ways that are uniquely experimental, dangerous, and discriminatory in the border and immigration enforcement context." The European Border and Coast Guard Agency, also called Frontex, has tested unpiloted military-grade drones in the Mediterranean and Aegean for the surveillance and interdiction of vessels of migrants and refugees trying to reach Europe, the expert, E. Tendayi Achiume, reported. The U.N. antiracism panel, which is charged with monitoring and holding states to account for their compliance with the international convention on eliminating racial discrimination, said states must legislate measures combating racial bias and create independent mechanisms for handling complaints.


UC Berkeley Researchers Use AI For Digital Voicing Of Silent Speech

#artificialintelligence

Researchers at UC Berkeley have developed an AI model that detects'silent speech.' The model is based on digital voicing to predict words and generate synthetic speech. Electromyography (EMG), with electrodes located at the face and throat, is used to detect the silent speech. Researchers assert that the model can enable many applications for people who cannot produce audible speech and assist speech detection for AI tools and additional devices that respond to voice commands. The team states that digitally voicing silent speech has broad applications.


Welcome to the Ethics of AI webinar on 27 November

#artificialintelligence

In this event, you will learn about real-life challenges and solutions regarding the use of artificial intelligence. You will also get acquainted with the newly published open online course Ethics of AI, where you can enhance your own skills in addressing these issues. You will also hear more about the challenges and possibilities of using artificial intelligence in public services in the cities of Helsinki, London and Amsterdam and the Ministry of Finance of Finland. Our keynotes are Jan Vapaavuori, Mayor of Helsinki and Pekka Ala-Pietilä, chair of the EU commission High-Level Expert Group on Artificial Intelligence. The host of the event is Santeri Räisänen.


Protecting consumers from collusive prices due to AI

Science

The efficacy of a market system is rooted in competition. In striving to attract customers, firms are led to charge lower prices and deliver better products and services. Nothing more fundamentally undermines this process than collusion, when firms agree not to compete with one another and consequently consumers are harmed by higher prices. Collusion is generally condemned by economists and policy-makers and is unlawful in almost all countries. But the increasing delegation of price-setting to algorithms ([ 1 ][1]) has the potential for opening a back door through which firms could collude lawfully ([ 2 ][2]). Such algorithmic collusion can occur when artificial intelligence (AI) algorithms learn to adopt collusive pricing rules without human intervention, oversight, or even knowledge. This possibility poses a challenge for policy. To meet this challenge, we propose a direction for policy change and call for computer scientists, economists, and legal scholars to act in concert to operationalize the proposed change. Collusion among humans typically involves three stages (see the table). First, firms' employees with price-setting authority communicate with the intent of agreeing on a collusive rule of conduct. This rule encompasses a higher price and an arrangement to incentivize firms to comply with that higher price rather than undercut it in order to pick up more market share. For example, in 1995 the CEOs of Christie's and Sotheby's hatched their plans in a limo at Kennedy International Airport, and in 1994 the U.S. Federal Bureau of Investigation secretly taped the lysine cartel as they conspired in a Maui hotel room. At those meetings, they spoke about charging higher prices and how to enforce them. Second, successful communication results in the mutual adoption of a collusive rule of conduct, which commonly takes the form of a collusive pricing rule. A crucial component of this pricing rule is retaliatory pricing: Each firm raises its price and maintains that higher price under the threat of a “punishment,” such as a temporary price war, should it cheat and deviate from the higher price ([ 3 ][3]). It is this threat that sustains higher prices than would arise under competition. Third, firms set the higher prices that are the consequence of having adopted those collusive pricing rules. ![Figure][4] The process that produces higher prices To determine whether firms are colluding, one could look for evidence at any of the three stages. However, evidence related to the last two stages—pricing rules and higher prices—is generally regarded as insufficient to achieve the requisite level of confidence in the judicial realm. Economists know how to calculate competitive prices given demand, costs, and other relevant market conditions. But many of these factors are difficult to observe and, when observable, are challenging to measure with precision. Consequently, courts do not use the competitive price level as a benchmark to identify collusion. Likewise, it is difficult to assess whether the firms' rules of conduct are collusive because such rules are latent, residing in employees' heads. In practice, we may never observe the retaliatory lower prices from a firm that cheated, even though that response is there in the minds of the employees and it is the anticipation of such a response that sustains higher prices. In other words, we might lack the events that produce the data that could identify the collusive pricing rules. Furthermore, even if one could observe what looks like a price war, it would be difficult to rule out innocent explanations (such as a decrease in the firms' costs or a fall in demand). Given the latency of collusive pricing rules and the difficulty of determining whether prices are collusive or competitive, antitrust law and its enforcement have focused on the first stage: communications. Firms are found to be in violation of the law when communications (perhaps supplemented by other evidence) are sufficient to establish that firms have a “meeting of minds,” a “concurrence of wills,” or a “conscious commitment” that they will not compete ([ 4 ][5]). In the United States, more specifically, there must be evidence that one firm invited a competitor to collude and that the competitor accepted that invitation. The risk of false positives (i.e., wrongly finding firms guilty of collusion) has led courts to avoid basing their judgments on evidence of collusive pricing rules or collusive prices and instead to rely on evidence of communications. Although the use of pricing algorithms has a long history—airline companies, for instance, have been using revenue management software for decades—concerns regarding algorithmic collusion have only recently arisen for two reasons. First, pricing algorithms had once been based on pricing rules set by programmers but now often rely on AI systems that learn autonomously through active experimentation. After the programmer has set a goal, such as profit maximization, algorithms are capable of autonomously learning rules of conduct that achieve the goal, possibly with no human intervention. The enhanced sophistication of learning algorithms makes it more likely that AI systems will discover profit-enhancing collusive pricing rules, just as they have succeeded in discovering winning strategies in complex board games such as chess and Go ([ 5 ][6]). Second, a feature of online markets is that competitors' prices are available to a firm in real time. Such information is essential to the operation of collusive pricing rules. In order for firms to settle on some common higher price, firms' prices must be observed frequently enough because sustaining those higher prices requires the prospect of punishing a firm that deviates from the collusive agreement. The more quickly the punishment is meted out, the less temptation to cheat. Thus, the emergence and persistence of higher prices through collusion is facilitated by rapid detection of competitors' prices, which is now often possible in online markets. For example, the prices of products listed on Amazon may change several times per day but can be monitored with practically no delay. In light of these developments, concerns regarding the possibility of algorithmic collusion have been raised by government authorities, including the U.S. Federal Trade Commission (FTC) ([ 6 ][7]) and the European Commission ([ 7 ][8]). These concerns are justified, as enough evidence has accumulated that autonomous algorithmic collusion is a real risk. The evidence is both experimental and empirical. On the experimental side, recent research has found the spontaneous emergence of collusion in computer-simulated markets. In these studies, commonly used reinforcement-learning algorithms learned to initiate and sustain collusion in the context of well-accepted economic models of an industry ([ 8 ][9], [ 9 ][10]) (see the figure). Collusion arose with no human intervention other than instructing the AI-enabled learning algorithm to maximize profit (i.e., algorithms were not programmed to collude). Although the extent to which prices were higher in such virtual markets varied, prices were almost always substantially above the competitive level. On the empirical side, a recent study ([ 10 ][11]) has provided possible evidence of algorithmic collusion in Germany's retail gasoline markets. The delegation of pricing to algorithms was found to be associated with a substantial 20 to 30% increase in the markup of stations' prices over cost. Although the evidence is indirect—because the authors of the study could not directly observe the timing of adoption of the pricing algorithms and thus had to infer it from other data—their findings are consistent with the results of computer-simulated market experiments. Algorithmic collusion is as bad as human collusion. Consumers are harmed by the higher prices, irrespective of how firms arrive at charging these prices. However, should algorithmic collusion emerge in a market and be discovered, society lacks an effective defense to stop it. This is because algorithmic collusion does not involve the communications that have been the route to proving unlawful collusion (as distinguished from instances in which firms' employees might communicate and then collude with the assistance of algorithms, as in a recent case involving poster sellers on Amazon Marketplace). And even if alternative evidentiary approaches were to arise, there is no liability unless courts are prepared to conclude that AI has a “mind” or a “will” or is “conscious,” for otherwise there can be no “meeting of minds” with algorithmic collusion. As a result, if algorithmic collusion occurs and is discovered by the authorities, currently it cannot be considered a violation of antitrust or competition law. Society would then have no recourse and consumers would be forced to continue to suffer the harm from algorithmic collusion's higher prices. ![Figure][4] Collusive pricing rules uncovered After the two algorithms have found their way to collusive prices (“learning phase,” left side), an attempt to cheat so as to gain market share is simulated by exogenously forcing Firm 1's algorithm to cut its price (“punishment phase,” right side). From the “shock” period onward, the algorithm regains control of the pricing. Firm 1's deviation is punished by the other algorithm, so firms enter into a price war that lasts for several periods and then gradually ends as the algorithms return to pricing at a collusive level. For better graphical representation, the time scales on the right and left sides of the figure are different. GRAPHIC: N. CARY/ SCIENCE FROM CALVANO ET AL. ([ 8 ][9]) There is an alternative path, which is to target the collusive pricing rules learned by the algorithms that result in higher prices ([ 11 ][12]). These latent rules of conduct may be uncovered when they have been adopted by algorithms. Whereas a court cannot get inside the head of an employee to determine why prices are what they are, firms' pricing algorithms can be audited and tested in controlled environments. One can then simulate all sorts of possible deviations from existing prices and observe the algorithms' reaction in the absence of any confounding factor. In principle, the latent pricing rules can thus be identified precisely. This approach was successfully used by researchers in ([ 8 ][9]) to verify that the pricing algorithms have indeed learned the collusive property of reward (keeping prices high unless a price cut occurs) and punishment (through retaliatory price wars should a price cut occur). To show this, the researchers momentarily overrode the pricing algorithm of one firm, forcing it to set a lower price. As soon as the algorithms regained control of the pricing, they engaged in a temporary price war, where lower prices were charged but then gradually returned to the collusive level. Having learned that undercutting the other firm's price brings forth a price war (with the associated lower profits), the algorithms evolved to maintain high prices (see the figure). It may seem paradoxical that collusion can be identified by the low retaliatory prices, which could be close to the competitive level, rather than by the high prices that are the ultimate concern for policy. But there are two important differences between retaliatory price wars and healthy competition. First, in the absence of the low-price perturbation, the price war remains hypothetical in that it is a threat that is not executed. Second, the price war shown in the figure is only temporary: Instead of permanently reverting to the competitive price level, the algorithms gradually return to the pre-shock prices. This is evidence that the price war is there to support high prices, not to produce low prices. Focusing on the collusive pricing rules is the key to identifying, preventing, and prosecuting algorithmic collusion (see the table). Policy cannot target the higher prices directly, nor can it target communications as they may not be present (unlike with human collusion). But the retaliatory pricing rules may now be observable, as firms' pricing algorithms can be audited and tested. We therefore propose that antitrust policy shift its focus from communications (with humans) to rules of conduct (with algorithms). Making the proposed change operational involves a broad research program that requires the combined efforts of economists, computer scientists, and legal scholars. One strand of this program is a three-step experimental procedure. The first step creates collusion in the lab for descriptively realistic models of markets. As the competitive price would be known by the experimenter, collusion is identified by high prices. Having identified an episode of collusion, the second step is to perform a post hoc auditing exercise to uncover the properties of the collusive pricing rules that produced those high prices. Some progress has been made on the identification of collusive rules of conduct adopted by algorithms, but much more work needs to be done. Economics provides several properties to watch out for. Of course, there is the retaliatory price war discussed above, which is what existing research has focused on (8, 9). Another property is price matching, whereby firms' prices move in sync: one firm changing its price and the other firm subsequently matching that change. Price matching has been documented for human collusion in various markets, but we do not yet know whether algorithms are capable of learning it. A third property is the asymmetry of price responses. When firms collude, they typically respond to a competitor's price cut more strongly—as part of a punishment—than to a price increase. No such asymmetry is to be expected when firms compete. The aforementioned properties are based on economic theory and studies of human collusion. Learning algorithms may devise rules of conduct that neither economists nor managers have imagined ( just as learning algorithms have done, for instance, in chess). To investigate this possibility, computer scientists might develop algorithms that explain their own behavior, thereby making the collusive properties more apparent. One way of doing so is to add a second module to the reinforcement-learning module that maximizes profits; this second module maps the state representation of the first one onto a verbal explanation of its strategy ([ 12 ][13]). Having uncovered collusive pricing rules, the third step is to experiment with constraining the learning algorithm to prevent it from evolving to collusion. Computer scientists are particularly valuable here, given that they are involved in similar tasks such as trying to constrain algorithms so that, for instance, they do not exhibit racial and gender bias ([ 13 ][14]). Once the capacities to audit pricing algorithms for collusive properties and to constrain learning algorithms so that they do not adopt collusive pricing rules have been developed, legal scholars are called upon to use that knowledge for purposes of prosecution and prevention. One route is to make certain pricing algorithms unlawful, perhaps under Section 5 of the FTC Act, which prohibits unfair methods of competition. In the area of securities law, the 2017 case U.S. v. Michael Coscia made illegal the use of certain programmed trading rules and thus provides a legal precedent for prohibiting algorithms. Another path is to make firms legally responsible for the pricing rules that their learning algorithms adopt ([ 14 ][15]). Firms may then be incentivized to prevent collusion by routinely monitoring the output of their learning algorithms. These are some of the avenues that can be pursued for preventing and shutting down algorithmic collusion. There are several obstacles down the road, including the difficulty of making a collusive property test operational, the lack of transparency and interpretability of algorithms, and courts' willingness and ability to incorporate technical material of this nature. In addition, there is the challenge of addressing algorithmic collusion without giving up the efficiency gains from pricing algorithms such as the quicker response to changing market conditions. As authorities prepare to take action ([ 15 ][16]), it is vital that computer scientists, economists, and legal scholars work together to protect consumers from the potential harm of higher prices. 1. [↵][17]1. A. Ezrachi, 2. M. Stucke , Virtual Competition: The Promise and Perils of the Algorithm-Driven Economy (Harvard Univ. Press, 2016). 2. [↵][18]1. S. Mehra , Minn. Law Rev. 100, 1323 (2016). [OpenUrl][19] 3. [↵][20]1. J. Harrington , The Theory of Collusion and Competition Policy (MIT Press, 2017). 4. [↵][21]1. L. Kaplow , Competition Policy and Price Fixing (Princeton Univ. Press, 2013). 5. [↵][22]1. D. Silver et al ., Science 362, 1140 (2018). [OpenUrl][23][Abstract/FREE Full Text][24] 6. [↵][25]“The Competition and Consumer Protection Issues of Algorithms, Artificial Intelligence, and Predictive Analytics,” Hearing on Competition and Consumer Protection in the 21st Century, U.S. Federal Trade Commission, 13–14 November 2018; [www.ftc.gov/news-events/events-calendar/ftc-hearing-7-competition-consumer-protection-21st-century][26]. 7. [↵][27]“Algorithms and Collusion—Note from the European Union,” OECD Roundtable, June 2017; [www.oecd.org/competition/algorithms-and-collusion.htm][28]. 8. [↵][29]1. E. Calvano, 2. G. Calzolari, 3. V. Denicolo, 4. S. Pastorello , Am. Econ. Rev. 110, 3267 (2020). [OpenUrl][30] 9. [↵][31]1. T. Klein , “Autonomous Algorithmic Collusion: Q-Learning Under Sequential Pricing,” Amsterdam Law School Research Paper 2018-15 (2019). 10. [↵][32]1. S. Assad, 2. R. Clark, 3. D. Ershov, 4. L. Xu , “Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market,” CESifo Working Paper No. 8521 (2020). 11. [↵][33]1. J. Harrington , J. Compet. Law Econ. 14, 331 (2018). [OpenUrl][34] 12. [↵][35]1. Z. C. Lipton , ACM Queue 16, 30 (2018). [OpenUrl][36] 13. [↵][37]1. P. S. Thomas et al ., Science 366, 999 (2019). [OpenUrl][38][Abstract/FREE Full Text][39] 14. [↵][40]1. S. Chopra, 2. L. White , A Legal Theory for Autonomous Artificial Agents (Univ. of Michigan Press, 2011). 15. [↵][41]European Commission, document Ares(2020)2877634. Acknowledgments: The paper benefited from detailed and insightful comments by three anonymous reviewers. All authors contributed equally. The authors declare no competing interests. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: pending:yes [5]: #ref-4 [6]: #ref-5 [7]: #ref-6 [8]: #ref-7 [9]: #ref-8 [10]: #ref-9 [11]: #ref-10 [12]: #ref-11 [13]: #ref-12 [14]: #ref-13 [15]: #ref-14 [16]: #ref-15 [17]: #xref-ref-1-1 "View reference 1 in text" [18]: #xref-ref-2-1 "View reference 2 in text" [19]: {openurl}?query=rft.jtitle%253DMinn.%2BLaw%2BRev.%26rft.volume%253D100%26rft.spage%253D1323%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [20]: #xref-ref-3-1 "View reference 3 in text" [21]: #xref-ref-4-1 "View reference 4 in text" [22]: #xref-ref-5-1 "View reference 5 in text" [23]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DSilver%26rft.auinit1%253DD.%26rft.volume%253D362%26rft.issue%253D6419%26rft.spage%253D1140%26rft.epage%253D1144%26rft.atitle%253DA%2Bgeneral%2Breinforcement%2Blearning%2Balgorithm%2Bthat%2Bmasters%2Bchess%252C%2Bshogi%252C%2Band%2BGo%2Bthrough%2Bself-play%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aar6404%26rft_id%253Dinfo%253Apmid%252F30523106%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNjIvNjQxOS8xMTQwIjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzcwLzY1MjAvMTA0MC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [25]: #xref-ref-6-1 "View reference 6 in text" [26]: http://www.ftc.gov/news-events/events-calendar/ftc-hearing-7-competition-consumer-protection-21st-century [27]: #xref-ref-7-1 "View reference 7 in text" [28]: http://www.oecd.org/competition/algorithms-and-collusion.htm [29]: #xref-ref-8-1 "View reference 8 in text" [30]: {openurl}?query=rft.jtitle%253DAm.%2BEcon.%2BRev.%26rft.volume%253D110%26rft.spage%253D3267%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [31]: #xref-ref-9-1 "View reference 9 in text" [32]: #xref-ref-10-1 "View reference 10 in text" [33]: #xref-ref-11-1 "View reference 11 in text" [34]: {openurl}?query=rft.jtitle%253DJ.%2BCompet.%2BLaw%2BEcon.%26rft.volume%253D14%26rft.spage%253D331%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [35]: #xref-ref-12-1 "View reference 12 in text" [36]: {openurl}?query=rft.jtitle%253DACM%2BQueue%26rft.volume%253D16%26rft.spage%253D30%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [37]: #xref-ref-13-1 "View reference 13 in text" [38]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DThomas%26rft.auinit1%253DP.%2BS.%26rft.volume%253D366%26rft.issue%253D6468%26rft.spage%253D999%26rft.epage%253D1004%26rft.atitle%253DPreventing%2Bundesirable%2Bbehavior%2Bof%2Bintelligent%2Bmachines%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aag3311%26rft_id%253Dinfo%253Apmid%252F31754000%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [39]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjYvNjQ2OC85OTkiO3M6NDoiYXRvbSI7czoyMzoiL3NjaS8zNzAvNjUyMC8xMDQwLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [40]: #xref-ref-14-1 "View reference 14 in text" [41]: #xref-ref-15-1 "View reference 15 in text"


Boston University student who wants to use artificial intelligence for quality control in cannabis …

#artificialintelligence

At the competition, Donaldson presented EROWTH, a machine learning company with a goal of building quality control and prediction models primarily …


7 Most Popular Online Courses for College Students

#artificialintelligence

Costs of attending college have increased by merely 25% in the last 10 years. During the 1970s, enrolling in classes at a private college would have cost students no more than $18,000 yearly. Today, costs are close to $50,000 per year for a good private university, according to a report at CNBC. While earning a college degree should be an investment every student should make, most of us cannot afford this without entering student debt and thus, accepting the loss of our financial freedom. During the last years, online classes have become more popular for this exact reason.


Why we shouldn't fear the future of work

#artificialintelligence

The American workforce is at a crossroads. Digitization and automation have replaced millions of middle-class jobs, while wages have stagnated for many who remain employed. A lot of labor has become insecure, low-income freelance work. Yet there is reason for optimism on behalf of workers, as scholars and business leaders outlined in an MIT conference on Wednesday. Automation and artificial intelligence do not just replace jobs; they also create them.


Tracking development at the cellular level

Science

We each developed from a single cell—a fertilized egg—that divided and divided and eventually gave rise to the trillions of cells, of hundreds of types, that constitute the tissues and organs of our adult bodies. Advancing our understanding of the molecular programs underlying the emergence and differentiation of these diverse cell types is of fundamental interest and will affect almost every aspect of biology and medicine. Recently, technological advances have made it possible to directly measure the gene expression patterns of individual cells ([ 1 ][1]). Such methods can be used to clarify cell types and to determine the developmental stage of individual cells ([ 2 ][2]). Single-cell transcriptional profiling of successive developmental stages has the potential to be particularly informative, as the data can be used to reconstruct developmental processes, as well as characterize the underlying genetic programs ([ 3 ][3], [ 4 ][4]). ![Figure][5] A genomic technique for tracking cellular development High-throughput single-cell genomic methods enable a global view of cell type diversifcation by transcriptome and epigenome CREDIT: N. DESAI/ SCIENCE FROM CAO ET AL. ([7][6]) AND BIORENDER When I began my doctoral studies in Jay Shendure's lab at the University of Washington, available single-cell sequencing techniques relied on the isolation of individual cells within physical compartments and thus were limited in terms of both throughput and cost. As a graduate student, I developed four high-throughput single-cell genomic techniques to overcome these limitations ([ 5 ][7]–[ 8 ][8]). Leveraging these methods, I profiled millions of single-cell transcriptomes from organisms, in species that included worms, mice, and humans. By quantifying the dynamics of embryonic development at single-cell resolution, I was able to map out the global genetic programs that control cell proliferation and differentiation at the whole-organism scale. By the 1980s, biologists had documented every developmental step in the nematode Caenorhabditis elegans , from a single-cell embryo to the adult worm, and mapped the connections of all of the worm's neurons ([ 9 ][9]). However, although the nematode worm has a relatively small cell number (558 cells at hatching), a comprehensive understanding of the molecular basis for the specification of these cell types remains difficult. To resolve cellular heterogeneity, I first developed a method to specifically label the transcriptomes of large numbers of single cells, which we called sci-RNA-seq (single-cell combinatorial indexing RNA sequencing) ([ 5 ][7]). This method is based on combinatorial indexing, a strategy using split-pool barcoding of nucleic acids to label vast numbers of single cells within a single experiment ([ 9 ][9]). In this study, I profiled nearly 50,000 cells from C. elegans at the L2 stage, which is more than 50-fold “shotgun cellular coverage” of its somatic cell composition. We further defined consensus expression profiles for 27 cell types and identified rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. This was the first study to show that single-cell transcriptional profiling is sufficient to separate all major cell types from an entire animal. C. elegans development follows a tightly controlled genetic program. Other multicellular organisms, such as mice and humans, have much more developmental flexibility. However, conventional approaches for mammalian single-cell profiling lack the throughput and resolution to obtain a global view of the molecular states and trajectories of the rapidly diversifying and expanding cell types. To investigate cell state dynamics in mammalian development, I developed an even more scalable single-cell profiling technique, sci-RNA-seq3 ([ 7 ][6]), and used it to trace the development path of 2 million mouse cells as they traversed diverse paths in a 4-day window of development corresponding to organogenesis (embryonic day 9.5 to embryonic day 13.5). From these data, we characterized the dynamics of cell proliferation and key regulators for each cell lineage, a potentially foundational resource for understanding how the hundreds of cell types forming a mammalian body are generated in development. This was, and remains, the largest publicly available single-cell transcriptional dataset. The sci-RNA-seq3 method enabled this dataset to be generated rapidly, within a few weeks, by a single individual. A major challenge regarding current single-cell assays is that nearly all such methods capture just one aspect of cellular biology (typically mRNA expression), limiting the ability to relate different components to one another and to infer causal relationships. Another technique that I developed, sci-CAR (single-cell combinatorial indexing chromatin accessibility and mRNA) ([ 6 ][10]), was created with the goal of overcoming this limitation, allowing the user to jointly profile the epigenome (chromatin accessibility) and transcriptome (mRNA). I applied sci-CAR to the mouse whole kidneys, recovering all major cell types and linking cis-regulatory sites to their target genes on the basis of the covariance of chromatin accessibility and transcription across large numbers of single cells. To further explore the gene regulatory mechanisms, I invented sci-fate ([ 8 ][8]), a new method that identifies the temporal dynamics of transcription by distinguishing newly synthesized mRNA transcripts from “older” mRNA transcripts in thousands of individual cells. Applying the strategy to cancer cell state dynamics in response to glucocorticoids, we were able to link transcription factors (TFs) with their target genes on the basis of the covariance between TF expression and the amount of newly synthesized RNA across thousands of cells. In summary, my dissertation involved developing the technical framework for quantifying gene expression and chromatin dynamics across thousands to millions of single cells and applying these technologies to profile complex, developing organisms. The methods that I developed enable such projects to be achievable by a single individual, rather than requiring large consortia. Looking ahead, I anticipate that the integration of single-cell views of the transcriptome, epigenome, proteome, and spatial-temporal information throughout development will enable an increasingly complete view of how life is formed. GRAND PRIZE WINNER Junyue Cao Junyue Cao received his undergraduate degree from Peking University and a Ph.D. from the University of Washington. After completing his postdoctoral fellowship at the University of Washington, Junyue Cao started his lab as an assistant professor and lab head of single-cell genomics and population dynamics at the Rockefeller University in 2020. His current research focuses on studying how a cell population in our body maintains homeostasis by developing genomic techniques to profile and perturb cell dynamics at single-cell resolution. CATEGORY WINNER: ECOLOGY AND EVOLUTION Orsi Decker Orsi Decker completed her undergraduate degree at Eötvös Loránd University in Budapest, Hungary. She went on to receive her master's degree in Ecology and Evolution at the University of Amsterdam. Decker completed her doctoral research at La Trobe University in Melbourne, Australia, where she investigated the extinctions of native digging mammals and their context-dependent impacts on soil processes. She is currently a postdoctoral researcher at La Trobe University, where she is examining how land restoration efforts could be improved to regain soil functions through the introduction of soil fauna to degraded areas. [www.sciencemag.org/content/370/6519/925.1][11] CATEGORY WINNER: MOLECULAR MEDICINE Dasha Nelidova Dasha Nelidova completed her undergraduate degrees at the University of Auckland, New Zealand. She completed her Ph.D. in neurobiology at the Friedrich Miescher Institute for Biomedical Research in Basel, Switzerland. Nelidova is currently a postdoctoral researcher at the Institute of Molecular and Clinical Ophthalmology Basel, where she is working to develop new translational technologies for treating retinal diseases that lead to blindness. [www.sciencemag.org/content/370/6519/925.2][12] CATEGORY WINNER: CELL AND MOLECULAR BIOLOGY William E. Allen William E. Allen received his undergraduate degree from Brown University in 2012, M.Phil. in Computational Biology from the University of Cambridge in 2013, and Ph.D. in Neurosciences from Stanford University in 2019. At Stanford, he worked to develop new tools for the large-scale characterization of neural circuit structure and function, which he applied to understand the neural basis of thirst. After completing his Ph.D., William started as an independent Junior Fellow in the Society of Fellows at Harvard University, where he is developing and applying new approaches to map mammalian brain function and dysfunction over an animal's life span. [www.sciencemag.org/content/370/6519/925.3][13] 1. [↵][14]1. D. Ramsköld et al ., Nat. Biotechnol. 30, 777 (2012). [OpenUrl][15][CrossRef][16][PubMed][17] 2. [↵][18]1. C. Trapnell , Genome Res. 25, 1491 (2015). [OpenUrl][19][Abstract/FREE Full Text][20] 3. [↵][21]1. D. E. Wagner et al ., Science 360, 981 (2018). [OpenUrl][22][Abstract/FREE Full Text][23] 4. [↵][24]1. K. Davie et al ., Cell 174, 982 (2018). [OpenUrl][25][CrossRef][26][PubMed][27] 5. [↵][28]1. J. Cao et al ., Science 357, 661 (2017). [OpenUrl][29][Abstract/FREE Full Text][30] 6. [↵][31]1. J. Cao et al ., Science 361, 1380 (2018). [OpenUrl][32][Abstract/FREE Full Text][33] 7. [↵][34]1. J. Cao et al ., Nature 566, 496 (2019). [OpenUrl][35][CrossRef][36][PubMed][37] 8. [↵][38]1. J. Cao, 2. W. Zhou, 3. F. Steemers, 4. C. Trapnell, 5. J. Shendure , Nat. Biotechnol. 38, 980 (2020). [OpenUrl][39][CrossRef][40][PubMed][41] 9. [↵][42]1. D. A. Cusanovich et al ., Science 348, 910 (2015). [OpenUrl][43][Abstract/FREE Full Text][44] [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: pending:yes [6]: #ref-7 [7]: #ref-5 [8]: #ref-8 [9]: #ref-9 [10]: #ref-6 [11]: http://www.sciencemag.org/content/370/6519/925.1 [12]: http://www.sciencemag.org/content/370/6519/925.2 [13]: http://www.sciencemag.org/content/370/6519/925.3 [14]: #xref-ref-1-1 "View reference 1 in text" [15]: {openurl}?query=rft.jtitle%253DNature%2Bbiotechnology%26rft.stitle%253DNat%2BBiotechnol%26rft.aulast%253DRamskold%26rft.auinit1%253DD.%26rft.volume%253D30%26rft.issue%253D8%26rft.spage%253D777%26rft.epage%253D782%26rft.atitle%253DFull-length%2BmRNA-Seq%2Bfrom%2Bsingle-cell%2Blevels%2Bof%2BRNA%2Band%2Bindividual%2Bcirculating%2Btumor%2Bcells.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnbt.2282%26rft_id%253Dinfo%253Apmid%252F22820318%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: /lookup/external-ref?access_num=10.1038/nbt.2282&link_type=DOI [17]: /lookup/external-ref?access_num=22820318&link_type=MED&atom=%2Fsci%2F370%2F6519%2F924.atom [18]: #xref-ref-2-1 "View reference 2 in text" [19]: {openurl}?query=rft.jtitle%253DGenome%2BRes.%26rft_id%253Dinfo%253Adoi%252F10.1101%252Fgr.190595.115%26rft_id%253Dinfo%253Apmid%252F26430159%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [20]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZ2Vub21lIjtzOjU6InJlc2lkIjtzOjEwOiIyNS8xMC8xNDkxIjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzcwLzY1MTkvOTI0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [21]: #xref-ref-3-1 "View reference 3 in text" [22]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aar4362%26rft_id%253Dinfo%253Apmid%252F29700229%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [23]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjAvNjM5Mi85ODEiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzAvNjUxOS85MjQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [24]: #xref-ref-4-1 "View reference 4 in text" [25]: {openurl}?query=rft.jtitle%253DCell%26rft.volume%253D174%26rft.spage%253D982%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.cell.2018.05.057%26rft_id%253Dinfo%253Apmid%252F29909982%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/external-ref?access_num=10.1016/j.cell.2018.05.057&link_type=DOI [27]: /lookup/external-ref?access_num=29909982&link_type=MED&atom=%2Fsci%2F370%2F6519%2F924.atom [28]: #xref-ref-5-1 "View reference 5 in text" [29]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DCao%26rft.auinit1%253DJ.%26rft.volume%253D357%26rft.issue%253D6352%26rft.spage%253D661%26rft.epage%253D667%26rft.atitle%253DComprehensive%2Bsingle-cell%2Btranscriptional%2Bprofiling%2Bof%2Ba%2Bmulticellular%2Borganism%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aam8940%26rft_id%253Dinfo%253Apmid%252F28818938%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [30]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNTcvNjM1Mi82NjEiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzAvNjUxOS85MjQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [31]: #xref-ref-6-1 "View reference 6 in text" [32]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aau0730%26rft_id%253Dinfo%253Apmid%252F30166440%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [33]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNjEvNjQwOS8xMzgwIjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzcwLzY1MTkvOTI0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [34]: #xref-ref-7-1 "View reference 7 in text" [35]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D566%26rft.spage%253D496%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41586-019-0969-x%26rft_id%253Dinfo%253Apmid%252F30787437%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [36]: /lookup/external-ref?access_num=10.1038/s41586-019-0969-x&link_type=DOI [37]: /lookup/external-ref?access_num=30787437&link_type=MED&atom=%2Fsci%2F370%2F6519%2F924.atom [38]: #xref-ref-8-1 "View reference 8 in text" [39]: {openurl}?query=rft.jtitle%253DNat.%2BBiotechnol.%26rft.volume%253D38%26rft.spage%253D980%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41587-020-0480-9%26rft_id%253Dinfo%253Apmid%252F32284584%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [40]: /lookup/external-ref?access_num=10.1038/s41587-020-0480-9&link_type=DOI [41]: /lookup/external-ref?access_num=32284584&link_type=MED&atom=%2Fsci%2F370%2F6519%2F924.atom [42]: #xref-ref-9-1 "View reference 9 in text" [43]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aab1601%26rft_id%253Dinfo%253Apmid%252F25953818%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [44]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNDgvNjIzNy85MTAiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzAvNjUxOS85MjQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9


The Deep Learning Tool We Wish We Had In Grad School

#artificialintelligence

Machine learning PhD students are in a unique position: they often need to run large-scale experiments to conduct state-of-the-art research but they don't have the support of the platform teams that industrial ML engineers can rely on. As former PhD students ourselves, we recount our hands-on experience with these challenges and explain how open-source tools like Determined would have made grad school a lot less painful. When we started graduate school as PhD students at Carnegie Mellon University (CMU), we thought the challenge laid in having novel ideas, testing hypotheses, and presenting research. Instead, the most difficult part was building out the tooling and infrastructure needed to run deep learning experiments. While industry labs like Google Brain and FAIR have teams of engineers to provide this kind of support, independent researchers and graduate students are left to manage on their own.